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Abstract 

Error estimation in both the expected returns and the covariance 
matrix hamper the construction of optimal mean-variance portfolio 
model. In order to overcome this problem, we consider the class of 
proportional type estimators. The sensitivity of the proposed 
estimators to errors is measured by the expected loss function (the risk 
function). The simulation study is conducted when multivariate returns 
are normally distributed and serially independent. Furthermore, 
simulation study is complemented by an investigation of the ex post 
excess returns for empirical datasets, i.e., average, standard deviation, 
Sharpe ratio, and utility. It turns out that the unbiased proportional 
estimator and the maximum likelihood estimator are underperformed 
compared to “the dominant” estimator. 
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1. Introduction 

The mean-variance portfolio, which was introduced by Markowitz [12] is 
one of the standard frameworks employed to determine the optimal portfolio 
weights. He proposed away to find such a portfolio by analyzing mean-
variance structure of the return assets. The mean-variance portfolio assumes 
that rational investors would choose the lowest risk (measured by variance) 
at a certain level of expected return or choose the portfolio that gives the 
highest return at given level of risk. 

Mean-variance (MV) portfolio models of Markowitz are formulated 
mathematically in the following optimization problem: 

www Σμ ′γ−′
2max

w
 

s.t.: .1=′we  (1) 

It is known that pℜ∈μ  is the vector of expected return, pp×ℜ∈Σ  is the 

covariance matrix of return, and pℜ∈w  is the vector of portfolio weight. 
The parameter γ can be interpreted as a risk aversion, since it takes into 
account the trade-off between risk and return of the portfolios. 

Suppose that ( )Σμ,w  is the optimal portfolio weights (true optimal 

portfolio weight) based on μ  and .Σ  In practice, parameters μ  and Σ  are 

unknown and must be estimated from historical data sets. We denote random 
returns of the p risky assets if ( ) ,...,,, 21 ′= prrrr  then the maximum 

likelihood estimators of μ  and Σ  are ∑ === n
in 111ˆ rrμ  and == SΣ̂  

( ) ( ) ,1 1∑ =
′−−n

i iin rrrr  respectively. The maximum likelihood estimator 

of optimal portfolio is given by ( ).,ˆ Srw  However, the optimal portfolio 

weights obtained by this approach are instable and unreliable. 

Estimation of parameters of future asset returns is an essential step in the 
application of the mean-variance paradigm in practical finance. The impact 
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of error estimation on the Markowitz optimization procedure has been 
intensively analyzed for many years. For example, Best and Grauer [1] 
analyzed the sensitivity of optimal portfolios to changes in expected return 
estimates, Chopra and Ziemba [4] showed that even slight changes to the 
estimates of expected return or risk can produce vastly different mean- 
variance optimized portfolios. Meanwhile, Broadie [2] showed how the 
estimated efficient frontier overestimates the expected returns of portfolios 
for various levels of error estimation, Ceria and Stubbs [3] and Jobson and 
Korkie [8] have also pointed out this problem. Because of the ill-effects of 
estimation errors on optimal portfolios, portfolio optimization has been 
called “error maximization” (see Michaud [13]). 

Although many researchers raised serious objections to the mean-
variance model as a framework for defining optimal portfolio weight and 
proposed a number of alternatives, this model serves as the standard 
optimization framework for modern asset management (see Mori [14]). Thus 
it is important to examine the problem statistically under the mean-variance 
model. Few studies have addressed the problem of the mean-variance 
optimal portfolio weights statistically. Jobson and Korkie [8] and Ledoit [11] 
derived the asymptotic distribution of ( ).,ˆ Srw  Mori [14] and Kinkawa [10] 

have shown some interesting analytical results under the loss function used in 
the estimation problem of mean-variance model. Meanwhile, Palczewski and 
Palczewski [16] derived the closed-form formula related to the stability of 
portfolio estimator by using a mean square error. 

The quadratic loss function is usually used to evaluate the accuracy of an 
estimator. The loss functions in mean-variance problem are defined as the 
difference between the utility of the true optimal portfolio and that of an 
estimated portfolio. For this purpose, we extend the result of Mori [14] by 
quantification of the impact of the error estimation of the parameters on the 
portfolio weights both in simulation and empirical studies. Furthermore, we 
consider the class of proportional type estimators in which the maximum 
likelihood estimator ( )Srw ,ˆ  belongs to this class. 

The rest of the paper is organized as follows. In Section 2, we first 
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formulate the class of proportional type estimator and present the unbiased 
estimator of ( ).Σμ,w  In Section 3, we present the definition of the loss 

function and fundamental results for the proportional type estimator. In 
Section 4, we show risk behavior of the class proportional type estimator by 
Monte Carlo simulation and the results of empirical studies. Meanwhile, the 
conclusion is presented in Section 5. 

2. The Class of Proportional Type Estimators 

The mean-variance portfolio model (equation (1)) can be modeled more 
generally as a problem solving quadratic programming with linear 
constraints, namely: 

Qwww ′γ−′
2max μ

w
 

s.t.: ,bwA =′  (2) 

where Q is a pp ×  symmetric and nonsingular matrix, A is a qp ×  matrix 

of rank q and b is a 1×q  vector. Then the optimal solution of the problem 

(equation (2)) is given by 

 ( ) ( ) ( ) ,,,1
21 bQAQAw FF +

γ
= μΣμ,  (3) 

where, as in Mori [14], we define: 

( ) ( ) 11111
1 , −−−−− ′′−= QAAQAAQQQAF  

and 

( ) ( ) ., 111
2 bAQAAQQA −−− ′=F  

The class of estimators which is taken into account in this paper is given 
by Mori [14], i.e., the class of proportional type estimators. According to 
Mori [14], the definition of the proportional type estimators of ( )∑μ,w  is as 

such. 
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Definition 2.1. Let c be a positive constant. Then the following function: 

 ( ) ( ) ( )SArSASrw ,,,,ˆ 21 FFcc +
γ

=  (4) 

is the proportional type estimator of optimal portfolio weights. 

Next, as stated by Mori [14], the unbiased estimator of optimal portfolio 
weights is given by the following theorem. 

Theorem 1 (The unbiased estimator of optimal portfolio weights). Let 

{ }2;1max +−+> qppn  and .2
n

qpnc −+−=∗  Then 

( ) ( ) ( )bSArSASrw ,,,,ˆ 21 FFcc +
γ

=
∗

∗  

is an unbiased estimator for ( ).Σμ,w  

3. The Loss Function of the Optimal Portfolio Weights 

In Section 2, we have made a review of the proportional type estimator 
for optimal portfolio weights. In this section, we give the definition of the 
loss function in the estimation problem of the mean-variance optimal 
portfolio. 

We assume that an investor chooses the portfolio weights so as to 
maximize the objective function (utility function): 

 ( ) .2 wwww Σμ ′γ−′=π  (5) 

Let ( )Σμ,w  be a true (but unknown) optimal portfolio weight based on 

parameters μ  and ,Σ  if μ̂  and Σ̂  denote the estimators of on μ  and ,Σ  

respectively, and let ( )Σ,μ ˆˆŵ  be an estimator for optimal portfolio weights 

based on the estimators μ̂  and .Σ̂  As stated by [10], the loss function of the 

estimator ( )Σ,μ ˆˆŵ  is given by 

 ( ) ( ) ( ).ˆˆ; wwww π−π=L  (6) 
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Some researchers have adopted the similar loss function, for example 
Mori [14], Kan and Zhou [9], Okhrin and Schmid [15] and Golosnoy and 
Okhrin [7]. The problem of estimation error in the optimal portfolio weights 
can be measured by taking the expected loss function, which is defined as 

 ( ) ( ( )) ( ( ) ( )).ˆˆ;ˆ; wwwwww π−π== ELER  (7) 

According to Kinkawa [10], equation (7) is also called the risk function. 

An estimator ( )111 ˆ,ˆˆ Σμw  is said to dominate an estimator ( ),ˆ,ˆˆ 222 Σμw  if 

for all ( ),Σμ,  ( ( )) ( ( ))222111 ˆ,ˆˆˆ,ˆˆ ΣμΣμ ww RR ≤  with strict inequality for 

some ( ).Σμ,  So, the expected loss function measures the sensitivity of the 

optimization procedure to the error estimation: a low value corresponds to a 
high precision of the portfolio weights estimation. 

Given the utility function (equation (5)), thus ( )ŵπ  is written as 

( ) ( ) ( ( ) ) rTTSTATTw 12111
1

1 ,ˆ −−−−− ′′′
γ

=π nFnc μ  

( ) ( ( ) )
⎩
⎨
⎧

′′
γ

γ− −−−− xTSTATT 111
1

1
2

22
,2 nFcn  

( ) ( )rSASAb nFnFnc ,, 12′′
γ

+  

( ) ( ) ( ) ( )
⎪⎭

⎪
⎬
⎫

′′+
γ

+ bSASAbbSArSA nFnFnFnFnc ,,,, 2221  

( ) ( ) ( )rSASAxrSA nFnFcnnFnc ,,2, 11
22

1 ∑′′
γ

−′
γ

= μ  

( ) ( ) .containnotdoterms,, 21 cnFnncF +− bSArSA  

Next, the expected utility function is: 

( ( )) ( )
( )⎥⎦

⎤
⎢⎣
⎡

−+−
′

γ
=π 2

,ˆ 1
qpn

FncE μΣμ Aw  
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( ) ( ) ( )

( ) ( ) ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+−−+−−+−

−+′−

γ
− 421

,2

2
122

qpnqpnqpn
n

qpFncn μΣμ A
 

.containnotdoterms c+  (8) 

Let ( );1−+−= qpns  ( ) .,1
2 μΣμ AF=ϕ  Equation (8) can be written as 

( ( )) ( )
( ) ( )

( ) ( ) ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

−+ϕ−

γ
−⎥

⎦

⎤
⎢
⎣

⎡
−
ϕ

γ
=π 31

2
21

ˆ
2222

sss
n

qpncn
s

ncE w  

.containnotdoterms c+  (9) 

The constant pc  maximizes ( ( ( )))Σ,μ ˆˆŵπE  if ( )
( ) ,2

3 θ
−
−= nn

sscp  where =θ  

( ) .
2

2

n
qp −+ϕ

ϕ  The maximizer pc  depends on the unknown parameters μ  

and .Σ  Instead of using ,pc  we use the constant ( )
( ) .2

3
−
−=∗

nn
sscp  Next, we 

can obtain the risk expression of ( )Σ,μ ˆˆŵ  by plugging in equation (9) into 

equation (7): 

( )
( ) ( )

( ) ( ) ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

−+ϕ−

γ
+

γ
ϕ

⎟
⎠
⎞⎜

⎝
⎛

−
−= 31

2
221

21ˆ;
2222

sss
n

qpncn
s

ncR ww  

.containnotdoterms c+  (10) 

The maximizer ∗
pc  minimizes the risk of the estimator of optimal portfolio 

weights ( ).ˆˆˆ Σ,μw  Therefore, ( ) ( ) ( )bSAxSASxw ,,,;ˆ 21 FF
c

c p
p +

γ
=

∗
∗  

dominates the unbiased estimators that correspond to the choice =∗c  

n
qpn 2−+−  and maximum likelihood estimator (classical) with .1=c  
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4. Comparison of the Proportional Type Estimator 

In previous sections, we have investigated the properties of the 
proportional type estimator of optimal portfolio weights analytically. In this 
section, the estimation will be evaluated by simulation and empirical data. 

4.1. Validation simulation 

The risk behaviors of three estimators are evaluated by Monte Carlo 
simulation. The three estimators are: (i) A classical estimator ( )Srw ,;ˆ c  

with ,1=c  (ii) an unbiased estimator ( )Srw ,;ˆ ∗c  with ,2
n

qpnc −+−=∗  

(iii) a “dominant” estimator ( )Srw ,;ˆ ∗
pc  with ( )

( ) .2
3

−
−=∗

nn
sscp  

Theoretically the results of Sections 2 and 3 require that time series of 
data be serially independent and multivariate to be normally distributed. The 
procedure of Monte Carlo simulation is similar to that of Kinkawa [10] and 
this procedure is explained in the following algorithm: 

Algorithm 1: 

1. Generate n random vectors from p-variate normal distribution ~r  

(( ) )IN p ,212 1pϕ  for some selected values of .2ϕ  

2. Calculate the risk function for all estimators by using equation (10). 

3. Repeat steps 1-2 to 10,000 times. 

4. Calculate the average risk function for each estimator. 

As can be seen from equation (10), the risk function of the proportional 

type estimator depends on parameters μ  and Σ  only through =ϕ2  

( ) .,1 μΣμ AF  That is, the risk values are the same for any μ  and Σ  if the 

value of ’2ϕ s is constant. 

In this simulation, we set 10=p  and 20; 100,60=n  and 240; =ϕ2  

5.0;10.0;05.0  and 1, while .3=γ  The result of simulation study can be 

seen on Table 1. 
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Table 1. Risk values of estimators for optimal portfolio weights for some 
pairs of p and n 

 Risk (%) 

60,10 == np  05.02 =ϕ  10.02 =ϕ  5.02 =ϕ  12 =ϕ  

( )Sxw ,;ˆ c  33.7430 33.7101 33.7927 33.7702 

( )Sxw ,;ˆ ∗c  21.9011 21.1882 21.9295 21.9166 

( )Sxw ,;ˆ ∗
pc  15.5129 15.4972 15.5436 15.5257 

100,10 == np      

( )Sxw ,;ˆ c  14.2493 14.2527 14.2488 14.2551 

( )Sxw ,;ˆ ∗c  11.1656 11.1682 11.1654 11.1699 

( )Sxw ,;ˆ ∗
pc  9.1034 9.1056 9.1030 9.1071 

240,10 == np      

( )Sxw ,;ˆ c  4.4973 4.4981 4.4966 4.4976 

( )Sxw ,;ˆ ∗c  4.0863 4.0869 4.0856 4.0866 

( )Sxw ,;ˆ ∗
pc  3.7567 3.7574 3.7561 3.7570 

60,20 == np      

( )Sxw ,;ˆ c  187.6827 188.6914 188.0873 187.8029 

( )Sxw ,;ˆ ∗c  73.4808 73.8268 73.6196 73.5220 

( )Sxw ,;ˆ ∗
pc  37.1301 37.3564 37.2209 37.1570 

100,20 == np      

( )Sxw ,;ˆ c  49.7336 49.7722 49.7843 49.7216 

( )Sxw ,;ˆ ∗c  29.9895 30.0101 30.0165 29.9831 

( )Sxw ,;ˆ ∗
pc  19.9790 19.9954 20.0005 19.9739 

240,20 == np      

( )Sxw ,;ˆ c  11.4114 11.4088 11.4156 11.4102 

( )Sxw ,;ˆ ∗c  9.4356 9.4337 9.4389 9.4347 

( )Sxw ,;ˆ ∗
pc  7.9768 7.9750 7.9798 7.9760 
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From the results given in Table 1, we see that the risks of all estimators 
decrease when the number of observations increases. In this case, we find 

that the “dominant” estimator ( )Srw ,;ˆ ∗
pc  has a smaller risk than the 

unbiased estimator ( ).,;ˆ Srw c  Therefore, ( )Srw ,;ˆ ∗
pc  is more effective 

compared to the other estimators because a low value of risk corresponds to a 
high precision of the portfolio weights. 

4.2. Empirical verification 

Data used in this study are collected from Jakarta Stocks Exchange (JSE) 
consisting of 10 companies categorized as the blue chip namely AKRA = 
Akr Corporindo, BBRI = Bank Rakyat Indonesia, BMRI = Bank Mandiri 
(Persero), INDF = Indofood SuksesMakmur, INTP = Indocement Tunggal 
Prakarsa, JSMR = JasaMarga, LPKR = LippoKarawaci, MNCN = Media 
Nusantara Citra, SMGR = Semen Indonesia, and UNVR = Unilever 
Indonesia. As revealed by the New York Stock Exchange, a blue chip is 
stocked in a corporation with a national reputation for quality, reliability, and 
ability to operate profitably in good and bad times. Our time series data span 
was from 12/09/2012 to 29/12/2014 with a total of 120 weekly returns. 

In Subsection 4.1, we examine the risk behavior of proportional type 
estimators under the normality and independence assumptions. Here, we 
apply the Q-Q normal plot to check the validity of a distributional 
assumption for the data. Figure 1 displays the Q-Q normal plot for the data 
returns. 
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Figure 1. Q-Q normal plot for data returns. 

The data in this Q-Q plot appear to be normally distributed, because even 
though there is a slight, possibly curved trend in the plot, the circles are still 
plenty close enough to the line to not disqualify these data from being 
normal. 

Empirical time series of asset returns do not satisfy the assumption of 
independence. Therefore, we use a block bootstrap to handle this issue. A 
standard bootstrapping technique with sample single returns breaks the 
dependence between consecutive samples. We employ a moving block 
bootstrap method, which samples block of data preserving the dependence 
structure. The implementation of the block bootstrap method in our work is 
similar to that in Palczewski and Palczewski [16]. 

In this section, we compare the performance of the three estimators: 

( );,;ˆ Srw c  ( )Srw ,;ˆ ∗c  and ( )Srw ,;ˆ ∗
pc  based on the ex post excess returns 

average, standard deviation, Sharpe ratio and utility. We use a rolling horizon 
procedure similar to that in DeMiguel and Nogales [5] and DeMiguel et al. 
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[6] to compare the performance of the estimators. The detail of the method 
can be defined as follows: 

Algorithm 2: 

1. Set the length of estimation window k where .nk <  

2. Given the first window, do the moving block bootstrap. 

3. Compute the optimal portfolio weight for each strategy, call it 

( ),,;ˆ Srw c  ( )Srw ,;ˆ ∗c  and ( ).,;ˆ Srw ∗
pc  

4. Calculate ex post excess returns in period 1+t  i.e., ( ) .ˆˆ 11 ++ ′= ttt rr w  

5. Repeat steps 2-4 for the next window by including the next data point 
and drop the first data point of the estimation window (we assumed 
that investors would rebalance their portfolios for every week). 

After collecting the time series of the excess returns ,ˆ 1+tr  then calculate 

ex post average 

( ) ;ˆˆ
1

1ˆ;ˆ1ˆ 1 1 2
11∑ ∑−

=

−

= ++ μ−′
−−

=σ′
−

=μ
n

kt
n

kt
ex

tt
ex

tt
ex rknkn wrw  

Sharpe ratio ex

ex
exSR

σ

μ=
ˆ
ˆ  and utility .ˆ

2
ˆˆ exexex σγ−μ=π  To perform this 

empirical study, we need to set several values. First we set risk aversion 
3=γ  similar to that in Kinkawa [10]. Next, the length of estimation window 

( )k  equal to 60 and 100. Table 2 presents average, standard deviation and 

Sharpe ratio of ex post returns for all estimators. The utility exπ̂  used to 
measure the effectiveness of estimators. 
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Table 2. The performance of ex post average, standard deviation, Sharpe 
ratio and utility for all estimators 

 60=k  100=k  

 exμ̂  exσ̂  exSR  exπ̂  exμ̂  exσ̂  exSR  exπ̂  
 (%) (%)   (%) (%)   

( )Sxw ,;ˆ c  0.431 10.249 0.042 –0.149 1.662 6.627 0.251 –0.083 

( )Sxw ,;ˆ ∗c  0.484 9.454 0.051 –0.137 1.599 6.149 0.260 –0.076 

( )Sxw ,;ˆ ∗
pc  0.529 8.796 0.060 –0.127 1.546 5.756 0.269 –0.071 

We see that in all cases, the “dominant” estimator ( )Srw ,;ˆ ∗
pc  has 

smaller ex post standard deviation. Also, we can investigate that estimator 

( )Srw ,;ˆ ∗
pc  is outperformed compared to other estimators, since it generates 

the larger ex post Sharpe ratio and utility. Despite the performance of ex post 

average, the estimator ( )Srw ,;ˆ ∗
pc  has the largest ex post average only in the 

case .60=k  Thus, we find that the proportional type estimator using ∗= pcc  

is effective for these data set. 

5. Conclusion 

We have evaluated the proportional type estimators for the mean-
variance optimal portfolio weights analytically when the mean vector and 
covariance matrix are unknown. The sensitivity of portfolio weights is 
measured by the expected loss function (the risk function) which combines 
error estimation of portfolio weights into a single number. This facilitates the 
comparison of various estimations on the proportional type estimator. 

The theoretical results are complemented by a thorough simulation with 
varying sizes data sets and ex post excess returns of empirical study. We 
show that the risk of estimators computed by simulation study is in good 
agreement with the theory. In the class of proportional type estimator, we 

find that the “dominant” estimator ( )Srw ,;ˆ ∗
pc  is more effective than the 

unbiased estimator ( ).,;ˆ Srw c  Furthermore, the empirical results also show 
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that the estimator ( )Srw ,;ˆ ∗
pc  significantly outperformed in terms of 

average, standard deviation, Sharpe ratio and utility of ex post excess returns. 

We believe that the expected loss function (the risk function) should gain 
wider popularity as a tool for assessing properties of portfolio estimators. 
Further research could attempt to provide an analysis of portfolio weights 
error estimation for other models. 
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