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Abstract

In this paper, we first discuss the primeness of basic ideals in a free
R-algebra where R is a unital commutative ring. The condition of
primeness is applied to show a prime basic ideal in a path algebra RE
on a graph E. For every hereditary subset H, we can construct a
(graded) basic ideal Iy in RE. The basic ideal 1 is an ideal of linear
combinations of vertices in H and paths whose ranges in H. The
main purpose of this paper is to present the necessary and sufficient
conditions on a graph, so that Iy is a prime basic ideal, if H is
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saturated hereditary. Since O is saturated hereditary, we find the
necessary and sufficient conditions on a graph, so that a path algebra

RE is basically prime.

1. Introduction

Given a field K and a (directed) graph E = (E 0 El s, r), where E 0 is
a set of vertices, E' is a set of edges and two functions s, 7 : E' S EO A
path algebra KE is a free K-algebra having a basis E* in which E¥ is a
set of all paths in the graph [4, 6, 7]. Consider that the path algebra
KE = @ KE™ is a graded algebra [6, 7] and an associative algebra [7].

m=0

Moreover, KE is a unital algebra if E % is finite and it has a finite dimension
if £ is an acyclic finite graph [7]. In this paper, we discuss a path algebra

over a unital commutative ring as a generalization of the path algebra KE.

The path algebra KE can be extended to a Leavitt path algebra Lg (E)
over a field K on the extended graph with two conditions of Cuntz Krieger.
It is important to note that Lg(E) is also a free K-algebra [1, 2-6].
Furthermore, Tomforde [11] generalized Lg (E) into Ly (E) that is a Leavitt
path algebra over a unital commutative ring R. He introduced the term of a
basic ideal in Lz (E) to define basically simple Lz (E) [11]. Based on [11],
Wardati et al. developed a definition of prime basic ideal in Lp(E) to define
basically prime Lg(E) [12]. A generalization of a basic ideal in a free

R-algebra over a unital commutative ring R has been discussed in [13]. A part
of this paper will be devoted to the discussion of the primeness of the free
R-algebra and its properties characterized by the prime basic ideals. This

topic is a continuation of the paper [13] and it also refers to [8, 10, 14].

Larki [9] and Pino et al. [2, 5] defined that a nonempty subset M < E 0

is called a maximal tail if it satisfies three conditions MT1, MT2, MT3. They
found a relationship between the conditions MT1, MT2 and the saturated
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hereditary nature. A subset H — E 0 s saturated hereditary if and only if
M = EO\H satisfies MT1, MT2. Based on this property, & is saturated
hereditary and E 0 always satisfies the conditions MT1, MT2. The most
important result is the necessary and sufficient condition of primeness of
Ly (E), i, E° is a maximal tail. In other words, L (E) is prime if and
only if £ O satisfies the condition MT3.

The primeness of Ly (E) viewed as a ring (an algebra over itself) is a
result of Larki [9], that is Lz(E) is prime if and only if R is an integral

domain and E° satisfies the condition MT3. Different from Larki, the

primeness of Lg (E) is a consequence of a proposition of Pino et al. in [2, 5].
They stated that if H is saturated hereditary, then the graded ideal in Ly (E)
constructed by H, Iy = Spang{ap” : o, pe E*, r(a)=r(B)e H} is a
prime basic ideal if and only if M = E N\ is a maximal tail [2, 5]. Since &
is saturated hereditary and I = {0}, Lg(E) is a prime algebra if and only

if I is a prime basic ideal if and only if £ 0 is a maximal tail.

Based on [7], we can define an arrow ideal /g in RE, where E is a
connected finite graph. The arrow ideal [y is an ideal consisting of the
linear combinations of paths of length />1. In other words, Iy =
Spang{n € E'\E O} is a basic ideal that does not contain the vertices and it
is only defined on the connected graph. If given any finite graph having an
isolated vertex u € E°, i.e., r '(u)=s"'(u) = @, then we can form a basic
ideal Ru that consists a linear combination of u. If a hereditary subset
H < E° contains the isolated vertices, then Spangfu:r ' (u)=s""(u) = @}
® Spang{u € ENEY : r(p) e H} is also a basic ideal. It is clear that

the last two basic ideals do not contain H. Furthermore, we can define a

basic ideal constructed by the hereditary subset H, i.e., Iy = Spang{u €
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E* :r(u) € H v e H} that contains H. The basic ideal 7 in RE plays an

important role to discuss basically prime path algebra RE.

While the Leavitt path algebra Lg (E) is always semiprime [3, 4, 6], the

case for the path algebra KE is somewhat different. Pino et al. in [4, 6]
showed that a necessary and sufficient condition of a semiprime path algebra
KE is:

for every € E”, there exists v € E* such that

r(w) = s(v), s(u) = r(v). (1

If (1) is not met, then KF is neither a semiprime nor a prime algebra. So (1) is
a necessary condition of a prime path algebra KE. This indicates that (1) is

also a necessary condition for a basically prime path algebra RE.

The main purpose of this paper is to determine a necessary and sufficient
condition for the path algebra RE over a unital commutative ring is basically
prime. We can show that if H is saturated hereditary and a basic ideal

Iy = Spang{pn € E* :r(u) e H v pe H} is prime, then M = EQ\H is a
maximal tail, but not the converse. The main result is if A is saturated
hereditary, then /; is a prime basic ideal if and only if M = ENH is a
maximal tail and for every path a whose range r(a) € M, there exists a path

b such that r(a) = s(b) and s(a) = r(b). Furthermore, the path algebra RE is

basically prime if and only if for every v, w e E O there exists yekE % such

that v<y, w<y and for every path p, there is a path v such that
r() = s(v) and s(u) = r(v).

2. Basic Properties of Graphs

The discussions on the path algebras over a field can be found in
[4, 6, 7]. We first recall the notion of a quiver or directed graph and its
properties to discuss path algebras over a unital commutative ring. In further
discussion, a directed graph is stated by a graph only.
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Definition 2.1 [7]. A graph E = (EO, E's, r) is 4-tuples consisting of
two sets E° (whose elements are called vertices) and E ! (whose elements
are called edges) and two maps s, r : E "' E°. For every edge e € £ 1, its

source s(e) and its range r(e) are in E°.

A graph E is called row-finite graph if s~'(v) is finite for every v e E°.
A vertex u e E° is called an isolated vertex if ¥~ (u)=s"'(u) =D, ie.,

r(e) # u, s(e)# u for every e e E'. In this paper, we restrict to a finite

graph and row-finite graph. Throughout we simply write a finite graph.

A path p=ee...e, of length m>1 on a graph E is a sequence
of edges such that (¢;) = s(e;,;) with ¢; € E!, i=1,2, .., m—1, where
source and range of p are s(u) = s(e), r(n) = r(e,,), respectively. The path
n=ee;...e, is called cycle if r(n)=s(n) and s(e) = s(e;) for every
i # j. A cycle of length 1 is called a Joop. A set of all paths of length # is
denoted as E”, so that every vertex is a path of length 0. Furthermore, E”
denote a set of all paths in graph £. The composition of any two paths can be

defined as a multiplicative operation on E*. Then the multiplication of

pm=py...n; and v = vy...v; is defined as:

Rt e i () = s(v),
w = , 2
0, if r(uy) = s(v)-

This refers to [7] and we use it to define a path algebra over a unital

commutative ring.

Definition 2.2. Given a unital commutative ring R and a graph E =

(E 0, E 1, s, r). A path algebra over R on the graph E denoted RE is a free

R-algebra whose a basis £* such that the multiplication of two basis vectors
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defined by (2) satisfies two conditions: v,v; =8,v; and ¢ = er(e) =

s(e;)e;, forevery v;, v; € E, ¢ € EL

The first condition in Definition 2.2 shows that every vertex in the graph
is an idempotent element and any two distinct vertices form a pair of
orthogonal idempotent elements in RE. Moreover, based on Definition 2.2,

the path algebra RE has the properties stated in the following lemma.

Lemma 2.3. Let RE be a path algebra over a unital commutative ring on

a graph E. Then the following statements apply:

(1) RE is a graded associative algebra.

(2) RE has an identity if and only if E° is finite.
(3) RE has a finite dimension if and only if E is a finite acyclic graph.

Proof. Based on Definition 2.2, it is easy to show that RE is a graded
algebra, i.e., RE= @ RE™, where RE™ is an R-submodule of RE for

m=0
every m>0 and every nonnegative integer k,/, (RE¥)(RE') < RE**'. A

proof of an associative algebra RE, points (2) and (3) is analogous to the
proof of [7]. O

An ideal in RE can be constructed by a hereditary subset of E O The

definition of the hereditary subset is related to a preorder relation < on the
vertex set E° defined by Abrams and Pino [1] as: for every v, w € EO,

v<w if and only if v=w or there is a path u such that s(u)=v,
r(n) = w. According to [1], a subset H c E 0 s hereditary if v e H and
v<w imply we H. Then the subset H is called saturated if s~'(v) # @

and r(s~'(v)) ¢ H imply v e H.

We know that the tree of v e E° is defined and denoted as T(v) =

{we E® : v < w}. This definition can be extended to the tree of a subset
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X < E°, namely T(X)= J T(v). For every ve X, veT(v), X c
veX

T(X). Therefore, saturated hereditary closure of X denoted X is the
smallest saturated hereditary subset that contains X. This means that for
every saturated hereditary subset H > X implies X — H. To determine X

requires the following lemma which has been proven in [2].

o0
Lemma 2.4. Given a graph E and X < E°. Then X = U G.(x).
n=0

where Gy(X)=T(X) and
Gu(X)={ve E*:57(v) 2 @, (57" () € G,y (XN} U Gy (X)
forevery n > 1.

Besides the saturated hereditary subset, there is a nonempty subset of £ 0
that meets the conditions of maximal tail. According to [2, 5, 9], the maximal

tail is defined as follows:

Definition 2.5. Let £ is a graph. Then a nonempty subset M < EY is

called a maximal tail if it implies:

MTl.vaeEO,weM and v < w, then v € M.

MT2.If ve M with s~ '(v) # @, then there is e € E! with s(e) =v
and r(e) e M.

MT3. For every v, we M, thereis y € M suchthat v<y and w < y.

The saturated hereditary subset is interrelated to some conditions of
maximal tail. The relationship is stated in the following lemma that has been
proven by [2].

Lemma 2.6. Given a graph E and H c E O Then H is saturated
hereditary if and only if M = E NH satisfies the conditions MT1, MT2.
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3. The Primeness of Free Algebras over a Unital Commutative Ring

This section is a continuation of the paper [13], so we refer some of the
previous results. The algebra considered in this section is always a unital free
R-algebra that is simply written as a free R-algebra. We first recall the
definition of an ideal in the free R-algebra that meets a certain requirement.

Definition 3.1 [13]. Let A be a free R-algebra with a basis X. Then an

ideal 7 in A4 is called a basic ideal if kx € I for every non-zero k € R, and

every x € X, implies x € [.

In summary, the properties are stated in the following proposition (see
Proposition 2.7 and Lemma 2.8 in [13]).

Proposition 3.2. Let A be a free R-algebra with a basis X and I be an

ideal of A. Then we have the following assertions:

(1) 1 is a basic ideal if and only if I is a free ideal, namely the ideal I has

a basis in X.

(2)If h e X, then (h) = {ziaihbl- ta;, b e A4 } is a basic ideal.

The basic ideal is very important to discuss the primeness of a free
R-algebra. Analogous to the special properties of an ideal in a ring [10, 14],
we can define a prime basic ideal. There is a class of the free R-algebras

characterized by the basic ideal.

Definition 3.3. Let 4 be a free R-algebra and / be a basic ideal of 4.

(1) I is a prime basic ideal whenever I # A and any two basic ideals
P,Oc A, if POc i, then Pc Il orQcl.

(2) The algebra A is called basically prime algebra if the zero ideal is the

prime basic ideal.

The definition of basically prime algebra is based on the primeness of
zero basic ideal. We need the properties of prime basic ideal to discuss the

basically prime algebra. This is in line to the one presented in [10] and [14].
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Proposition 3.4. Let A be a free R-algebra with a basis X and P be a

basic ideal of A. Then the following assertions are equivalent:
(1) P is a prime basic ideal.

(2) For every a, b e A, if (a), (b) are basic ideals, and (a)(b) < P,
then a € P or b € P.

(3) For every a, b € A, if (a), (b) are basic ideals, and aAb < P, then
aePorbelPP.

Proof. It is clear to prove (1) = (2) = (3). To prove (3) = (1), take any
two basic ideals I, J < 4 such that IJ < P but /¢ P. According to

Proposition 3.2 point (1), the basic ideals /, J are free ideals. Then there is a
basis vector a € I, a ¢ P. Suppose {by, ..., b,,} is a basis of J. According to
Proposition 3.2 point (2), (a), (b;) are basic ideals for any i, 1 <i < m. In
addition, a4b; c IJ < P and based on (3), we find b; € P. Forany x € J,

m
X = Z rb; for some 7; € R and all basis vectors b; € J, 1<i < m, then
i=1
m
X = Z”ibi € P. It means that J c P. Hence, any two basic ideals
i=1
I,J < A such that IJ c P and I ¢ P, then J < P. Similarly to show
that any two basic ideals I, J < A such that /J < P and J ¢ P, then

I c P. Thus, the basic ideal P is prime. Il

A basically prime free R-algebra 4 depends on the primeness of the zero

basic ideal. Based on Definition 3.3 and Proposition 3.4, {0} is a prime basic
ideal if and only if for every a, b e 4, if (a), (b) are basic ideals and
(a) (b) = {0}, then @ = 0 or b = 0, if and only if for every a, b € 4, if (a),
(b) are basic ideals and a4b = {0}, then a = 0 or b = 0. Furthermore, if X
is a basis of 4, then {0} = (x) is a basic ideal for every x € X (Proposition

3.2, point (2)). In addition, each element in 4 is a linear combination of the
elements of X. Then we have a corollary stated as follows:
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Corollary 3.5. Let A be a free R-algebra with a basis X. Then A is
basically prime algebra if and only if (x)(y) # {0} if and only if xAy = {0}
forevery x, y € X.

4. Prime Basic Ideals in Path Algebras over a Ring

Throughout this section, the path algebra RE is a free R-algebra on a

finite graph E, where E” is a basis of RE. The arrow ideal / =9 KE! in
/21

path algebras over a field studied in [7], is an ideal generated by E” \EO,

where E is a connected finite graph. Similarly, we define I(E) = @ RE s
1>1

an arrow ideal in RE. Consequently, the ideal /(E) is an ideal that does not

contain a vertex and it is only defined on a connected finite graph E.

Analogous to the definition of the arrow ideal, when given a finite graph E
and O # X Cc E O, where each vertex is not isolated and there is an edge

e e E' such that r(e) € X. Then we can define the set of all paths whose

ranges in X, as follows:

Definition 4.1. Given a graph £ and & # X < E® such that every
vertex in X is not isolated and there is an edge e € E' such that r(e) e X.
We can define a set of all linear combinations of paths whose ranges in X and

they are not vertices, i.e., Spangiu € E* \EY : #(p) e X}

It is easy to show that Spang{n € EX\E" : (1) € X} is an R-submodule
of RE, but it is not necessarily an ideal. Note the following graph G with

G° = {u, v, w} and G' = {e, [

e

ue ( ;:)/—H‘li-‘

f
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We have a path algebra RG =({u, v, w, e, f, ef,e, el f, ..M ", ).

If X = {v}, then Spang{u e E\E® : r(u) = v} = ({e, €2, ..., €", ...}) is an

R-submodule but not an ideal in RG.

Proposition 4.2. Given a graph E and X c E O such that every vertex
in X is not isolated and there is an edge e € E' such that rle) e X.

Then Spang{n € EX\E® : r(n) € X} is a graded basic ideal if and only if X
is hereditary.

Proof. Consider J = Spang{n € EF\E? : r(n) € X}. We first suppose

that X is not hereditary. Take any a = z k;n; € J and a monomial
kieR

cx € RE such that r(x) ¢ X and 0 # a(cx) =( > kl-},t,}cx = > kic(px).
kiER kl'GR

Then there is a monomial kjc(p;x) # 0 such that s(x)=r(y;) e X but
r(ux) = r(x) ¢ X. We find kjc(u;x) ¢ J, soJis not an ideal and there is a
contradiction. Hence, X should be hereditary. For the converse, take any

a, b € J and any monomial kx € RE with k € K, x € E*. Then we have

a= Y kp,b= Y kjp; forsome p;, p; € ENEY, r(y,), r(nj) e X.
kjeR k;eR

It is clear that @ — b € J. Furthermore, for every w; € J, r(y;) # s(x), we
have a(kx) = [ > kiul}(kx) = ( > kik(ul-x)J =0 e J. Likewise, if there
kjeR kjeR
is w; e J with s(x) = r(y;) € X, then p,x # 0, and since X is hereditary,
r(u;x) = r(x) € X, so that 0 # a(kx) = ( > kik(ul-x)} e J. Hence, a(kx)
kl'GR
e J. Similarly, we get (kx)a € J. In other words, J is an ideal of RE.

Based on Definition 4.1, J is a free ideal, so that J is a basic ideal. Since



132 K. Wardati, I. E. Wijayanti and S. Wahyuni
JNRE® = {0} and
J = Spanpip € EN\E? : r(n) € X}

= @ Spang{p € EN\E" : r(p) € X, ln| =1},
>1

J= @ J, where J, =J N RE k" is an R-submodule of RE. Furthermore, it
k>0

is easy to show that J;J,, < J;,,,. Hence, J is a graded basic ideal. O

If the finite graph £ is connected, then the all vertices are not isolated. It

means that Proposition 4.2 implies the following corollary.

Corollary 4.3. If the finite graph E is connected, then the arrow ideal
I is a graded basic ideal in RE.

A hereditary subset H < E° may contain an isolated vertex. On the
graph G, H = {u, w} is hereditary subset containing an isolated vertex u
then Spanp{u} = (u) is a basic ideal. In addition, we can form a basic ideal

generated by the isolated vertex and the paths that are not vertices and the

ranges of the paths equal to w, i.e.,

Spang {u} ® Spang{u e ENE® : r(w)=we Hy={u, f.ef,...e"f,..}).

Analogous to the proof of Proposition 4.2, the last basic ideal is graded but
does not contain H. This inspires us to define a graded basic ideal which is
constructed by a hereditary subset contained in the ideal.

Definition 4.4. Given a finite graph £ and a hereditary subset H < E 0

We define a graded basic ideal Iz = Spangin € E* : r(n)e H v u e H}.

Consider a graph O with 0° = {uy, uy, u3, uy} and Q' = {e, e, e3} as

follows:
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i, €,

i,

u,

The acyclic graph Q does not contain an isolated vertex. We have a free

R-algebra RQ with a finite basis {uy, uy, us, ug, €|, e, €3, ere3}, and the
arrow ideal 7(Q) = ({e|, e, €3, epe3}). Furthermore, Hy = {u3} is hereditary
but not saturated and H; = {u,, u3} is a saturated hereditary closure of H;.
Then Iy, =({u3, e3, e2e3}) & Ig, = ({uy, u3, €3, €3, ere3}). From the graph
G, we know that H = {u, w}, K = {v, w} and H (1 K are hereditary subsets.
Then we have I =({u,w, f,....e" f,..}), Ix =({v,w,e, e, e, ..},
Iung =(w, fref, &, e f, ) and Ixly =(w, fref e f,.}) =
Ignk =1Iglg. The above cases illustrate the properties of basic ideals

constructed by a hereditary subset.

Proposition 4.5. Given a finite graph E and the hereditary subsets
H, Hy, c E°. Then we have the following:

(I)IJ(HI c H2, then IH] c IHZ'

(2) 1H11H2 = IHlmHz

Proof. We can prove (1) directly from the definition. Furthermore, take

any x € [y Iy, , then x = ab such that

a = Z cl-ul-+2kial-e[Hl, b= Z dJVJ+Z I]b] €1H2
c;eR k;eR djeR [;eR

Ml‘eHl vjeHz
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with a;, b; € ENE?, and ;) € Hy, r(b;) € H,. Then we have

X = Z cw + Z Z kil jaib; € Iyn g, -

ceR kiR l;eR
WEHlﬂHz

If x # 0, then there exist we Hy (1 H, or a;, b; € EN\EY with r(a;) =
s(b;) € H such that ab; € EN\E®, where r(a;bj) =r(b;) € Hy and
since s(b;) € H; and H; is hereditary, so that r(ab;) e Hy. We find
V(Cll-bj) € Hl ﬂHz or al-bj € IHlﬂHZ' Hence, ]HllHZ c IH1ﬂH2‘ For the

converse, take any y € TynH,- Then y = Z kiw; + Z cjp; for some
k;eR cjeR

w; e HH(1Hy c Hy, pj € EN\E® with r(n;) e Hi N Hy € Hy, so that

y €ly,. Since E® s finite, Hy( H, 1is also finite. Suppose

m
Wiy s Wt = HHNHy € Hy and ¢ =) w;, cely,. For every i, j,
i=1

w; is idempotent and p ;r(1 ;) = p;, then we have

m
yc = Zkl'wi‘f‘ chu/ ZWI' = Zkl-wl-+ ZCJHJ = ).

kjeR cjeR kieR cjeR

EIHI GIHZ

Hence, y € Iy, Iy, . O

If we reexamine the previous two graphs, H, H (1 K are the saturated

hereditary subsets in GO, as well as ﬁl in QO. Based on Lemma 2.6, the
complements of them are, respectively, M, M' and M{ which satisfy two

conditions MT1, MT2. However, only M' does not meet MT3, so that both
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M, M{ are maximal tails. According to Proposition 3.4, we can investigate

that Tyng, 1 F, are not prime basic ideals and the only prime basic ideal

1S IH

If H is a saturated hereditary subset of E 0, then we have a necessary

condition of primeness of the basic ideal /4, ie., M = E O\F is a maximal

tail. The next theorem states the necessary and sufficient conditions of

primeness of a basic ideal /. This theorem is an important result in this
paper.

Theorem 4.6. Let E be a finite graph and subset H c E 0 be a saturated
hereditary. A (graded) basic ideal 1y is prime if and only if M = E NH s
a maximal tail and for every path u whose a range r(W) in M, there is a path

v in RE such that r(n) = s(v) and s(un) = r(v).

Proof. Based on Lemma 2.6, since H is saturated hereditary,

M = EO\H meets the conditions MT 1, MT2. Suppose M does not meet
MT3, namely,

there exist v, w e M suchthat v £ y or w£ y forevery y e M.  (3)

According to Lemma 2.4, we have T(v) = U?:O G;(T(v)), where Go(T(v)) =
T(v) and G;(T(v))={x e E*:0 = r(s "' (x)) < G;_ | (T(v))} U G;_y(T(v)) for
every i > 1. We would show that T(v)\T(w)\ M =& as follows: suppose
Tv) N Tw) N M # &. Then there is the smallest integer k, 0 <k <n
such that G, (T(v)) NT(w)NM = @. If 0 < k < n, then there exists x e
G (T(V)NT(w)N M and G;_(T(v))NT(w)N M = B. On the other hand,

T(w) is hereditary, then @& # r(s™'(x)) € G,_{(T(v)) N T(w) < H. Since
H is hereditary, we find x € H which contradicts to xe M. If k=0 or
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TW)NT(w)N M = &, then there is the smallest integer [, 0</<n
such that T(v)N G)(T(w))N M # &. Since T(v) is hereditary, there is
analogously a contradiction if 0 </<n If =0, then T(v)NT(w)N
M # & or there exists y € T(v)(NT(w) (N1 M such that v<y, w<y and
y € M. This contradicts to (3). Hence, we have T(W)NT(w)NM =

or T(v)NT(w)< H. Then [m[m c [WOW c Iy Dbecause of

Proposition 4.5. Since /gy is a prime basic ideal, it implies [m cly
or Im cly. If [m c Iy and take any path a € Im < Iy such that

r(a) = v, then v € H which contradicts to v € M. We have a contradiction

similarly if IW cly. Thus, M = E O\H meets (MT3). In other words, M

is a maximal tail. Furthermore, suppose that there is a path a with r(a) € M
such that for every path b € RE implies r(a) # s(b) or s(a) # r(b). Then
a(RE)a = 0 < Iy. Since Iy is a prime basic ideal, based on Proposition
3.4, a € Iy. 1t means that r(a) € H which contradicts to r(a) € M. Thus,
for every path pu whose a range r(u) in M, there is a path v in RE such that
r(n) = s(v) and s(n) = r(v). The contrary proof, suppose that the basic
ideal Iy 1is not prime. Then there exist the paths o, B € RE such that (),
(B) are basic ideals, where aREBc Iy but o, ¢ Iy. If {0} # aREP
< Iy, then there is a path 6 € RE such that 0 # adp € /. It means
r(adB) = r(B) € H or B e Iy. Then there is a contradiction. The next, if

oREB = {0}, then for every path p € E* such that aup = 0 with a, B & I
has some possibilities. The first case, o, ¢ [ with o, B € ENE® or

o, B e E, then r(a), 7(B) e M or a, pe M. Since ap =0 or up =0,
we find r(a)# s(u) or r(u)= s(B) which contradicts to the second

condition of hypothesis. The second case, a, ¢ Iy with a € E*\EO,
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B=ucE’ then r(a), ueM. If ap=0, then r(o)= s(n) that

contradicts to the second condition. If ap # 0 and pf = pu = 0, then we
have r(a) = s(u) € M and r~'(u) = @, so that s~ (u) = @ because of the
following: suppose s_l(u) # . Then there is an edge e € E' such that
u = s(e) = r(o) which contradicts to () = @. Hence, the vertex u € M
1s 1solated, so that M is not a maximal tail. It contradicts to the first condition.
The last case, o, B ¢ [y with o =u € EO, Be E*\E". The proof of this
case is analogous to the second case. OJ

The trivial subset & is hereditary and {0} = I, then according to
Theorem 4.6, 0 is a prime basic ideal if and only if M = F 0 is a maximal tail

and for every path p, there is a path v such that 7(u) = s(v) and s(u) = (v).
Then Theorem 4.6 implies the discovery of the necessary and sufficient
conditions of basically prime path algebra RE stated in the following
corollary:

Corollary 4.7. The path algebra RE on a finite graph E is basically
prime if and only if for every v, w e EO, there exists y € E® such that
v <y, w<y and for every path w, there is a path v such that r(n) = s(v)

and s(p) = r(v).
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