
Support for Model Checking Z Specifications

Maria Ulfah Siregar1,2

1 PhD Student in the Department of Computer Science, The University of Sheffield
Regent Court, 211 Portobello, Sheffield, S1 4DP, United Kingdom

acp12mus@sheffield.ac.uk
2 Lecturer in Informatics Department, UIN Sunan Kalijaga

Yogyakarta, Indonesia

Abstract. One of the deficiencies of Z tools is that there is limited
support for model checking Z specifications. Building a model checker
directly for a Z specification will take considerable amount of effort and
time due to the abstraction of the language. Translating a Z specifi-
cation input into a specification in a language that an existing model
checker tool accepts is an alternative method. Researchers at the Uni-
versity of Sheffield implemented a translation tool, which they called
Z2SAL that takes a Z specification and translates it into the input for
Symbolic Analysis Laboratory (SAL), which is a framework for combin-
ing different tools for abstraction, program analysis, theorem proving
and model checking. This paper discusses support for model checking Z
specifications, in which the capability of Z2SAL is extended. This sup-
port includes a translation of a generic constant and a schema calculus
definition. Instead of translating these aspects of the Z language into
the SAL language as Z2SAL does, a Z specification containing these two
notations will be pre-processed, in which a generic constant definition
is redefined to an equivalent axiomatic definition and a schema calculus
definition is expanded to a new schema definition. As a result of a suc-
cessful redefinition or expansion, a redefined or expanded Z specification
is generated, otherwise the Z specification input is returned.

1 Introduction

As a formal language, the use of Z in academia and industry has increased
considerably. This is because Z has been used successfully to address a large
variety of problems and the international standard was also designed for this
language. The use of Z can make a specification more formal and free from
ambiguity. In addition, Z allows a specification to be analysed mechanically [1].
Designing a specification of a system enables a user to verify the system since an
early stage of the system development. An early verification can avoid high cost
in a system implementation and test phases, if the specification was designed
correctly [2–4]. Therefore, a specification is crucial for a system, especially if the
system relates to safety of property and/or life.

However, there is a lack of tools for this language, especially in model checking
Z specifications. Although the Community Z Tools (CZT) project is developing

continuously a set of open source tools for Z, progress of this development is
slow [5]. There are many causes of the shortage of Z tools. These are mostly
related to the Z language and semantics, such as an inherent expressiveness
and a difficulty in deciding effectively any theorem about Z specifications [5, 1].
Another cause is the richness of this language, which can also be the issue of
verifying Z [1]. Furthermore, only a few of these tools can be used in validating
intended meanings of such Z specifications [6].

The lack of supporting tools for the Z language and the above issues, make
researchers suggest an alternative method which is a quick approach: reuse and
adapt existing tools. Researchers at the University of Sheffield implemented the
Z2SAL translator [5] which generates a SAL specification from a Z specification
input. The generated SAL file can be model checked later by the SAL model
checker. A brief introduction to Z2SAL and SAL is given in the Section 2.

In our study, several experiments using Z2SAL and SAL are performed. Our
finding is Z2SAL supports many Z tags, but not all. Furthermore, sometimes
several generated SAL files could not be verified or simulated by the SAL tool.

Therefore, this paper intends to address problems as stated below:

1. What are crucial features of Z should be implemented to enhance the ability
of Z2SAL and why?

2. How is the implementation that supported by Z2SAL and SAL?

These questions will be explored in the Section 3. Our aim is to support model
checking Z specifications so as to broaden the applicability of model checking.

The paper is organized as follows. Section 2 describes briefly an introduction
to Z2SAL and SAL. Section 3 contains our support for model checking Z speci-
fications. This section is divided into two sub-sections. Section 3.1 presents our
support for generic constant definitions. Section 3.2 explains another support
which is schema calculus definitions. Section 4 concludes this paper and offers
several future works.

2 A Brief Introduction to Z2SAL and SAL

Several tools in Z were developed based on the quick approach, such as ProZ
[6] which is a translator of Z into the existing Alloy Analyser tool, ProB [7];
data refinement verification [8] which uses Alloy SAT-solver based on a counter-
example finder; and Z2SAL [5] which is a translator of a Z language specification
into a SAL language specification [9].

Smith and Wildman at the University of Queensland, Australia, described
how to translate a Z language specification into a SAL input language specifi-
cation [10]. This basic idea was implemented in a tool set [11] and the current
Z2SAL extends it in a different direction, and to tackle optimization issues [5].

In providing a translator of Z into an input language of existing tools, SAL
was chosen since it has an equivalent representation of many aspects of Z [11].
Moreover, many different tools exist, which use the SAL input language such
as simulator, model checker either symbolic or bounded, deadlock checker, etc.

[5], which are offered freely by Stanford Research Institute (SRI) International
under academic licences.

A generated SAL file consists of a SAL module and/ or several SAL contexts.
This module describes a transition system of Z states [11]. The simple SAL
module has a general format as follows:

State : MODULE =
BEGIN

INPUT . . .
LOCAL . . .
OUTPUT . . .
INITIALIZATION [. . .]
TRANSITION [

. . .
]

END

The SAL context is a place to declare types, constants, modules and modules
properties [9]. Z2SAL formulates several Z mathematical tool-kits, which are
necessary for a generated SAL specification, in separate but integrated SAL
context files.

Translating a Z language specification into a SAL input language specification
requires several adjustments due to the number of differences of both languages
[5]. These adjustments are discussed briefly as given below:

First, it is bounding the infinite. Z supports fully abstract (non-grounded,
non-constructive) specification styles, whereas SAL is a concrete and grounded
language. For example, Z supports the built-in numerical types Z, N and N1,
whose ranges are infinite. On the other hand, SAL has similar unbounded types
INTEGER, NATURAL and NZNATURAL, which can be used only as base types of fi-
nite sub-ranges in a SAL specification. Z supports also given types, which have
semantics of an un-interpreted set, such as [TAPE, NAME]. Therefore, the trans-
lations provided by Z2SAL should specify a finite number for sizes of these sets.

The mismatched formal paradigms are the second difference. Z and SAL have
very different styles of specifications and descriptions. The Z specification, which
consists of state schemas and operational schemas, is built-up increasingly. It
views locally and functionally such that every operational schema operates on its
input and output variables, or on variables of state schemas. In contrast to SAL,
the SAL specification is created as a ’monolithic finite state automaton’ (FSA)
such that all inputs, outputs and local variables are compiled into aggregate
states and all operations act upon guard transitions from one state configuration
to another state configuration [5]. Thus, this mismatch can be approached by
re-ordering all information in the Z specification. A further mismatch is that Z
specifications often use partial functions. On the other hand, as SAL is based
on Binary Decision Diagrams (BDDs), SAL always requires a representation of
function as a total function. Thus, a work-around is necessary in order to present
a partial function in Z specifications as a total function in SAL. Furthermore, a

set cannot be treated as a monolithic FSA of SAL, but as a ’poly-lithic collection
of judgements’ over its elements instead. Thus, several operations in sets are
necessary to be expressed differently, such as the cardinality of a set, which is
not supported by SAL.

The last difference is an issue of non-computable specifications. A Z specifi-
cation naturally supports non-constructive styles of a specification. These styles
should be expressed in computable styles of a specification in SAL. Both styles
essentially are different indeed. Normally, a SAL specification consists of a set
of update assignments to primed variables, which indicates posterior variable
states. In contrast to Z, a direction of a constructive approach is not necessary
in a Z specification. Z2SAL asserts posterior existences of variables and restricts
their values on preconditions. This requires a search for suitable precondition
values.

More information relating to Z2SAL is provided in [12]. It includes also a
downloadable version of this translation tool.

SAL is a framework of several different tools such as abstraction, program
analysis, theorem proving and model checking, which is used to change percep-
tions and implementations of model checkers and theorem provers. These per-
ceptions and implementations at first were based on verification, but they were
changed to a calculation of properties or symbolic analysis such as abstraction,
slicing and composition [9, 13].

The SAL language can be used as a specification language, a target language
for several translators, or a common source of several analysis tools. It originated
of a collaboration of two researchers, David Dill from Stanford University and
Thomas Henzinger from the University of California at Berkeley. These collab-
orations evolved and included Verimag in it. SAL is developed at SRI now and
its current version is 3.3. The SAL language syntax can be found in [9].

The next section describes our support for model checking Z specifications.

3 Support for Model Checking Z Specifications

Based on our experiences using Z2SAL, two aspects of the Z notation were chosen
to study in. The first one is a generic constant, which will be described in the
following sub-section.

3.1 Generic Constant Definitions

Our first support is to aid Z2SAL to translate generic constant definitions. The
following sub-sections describe reasons why this aspect of Z was taken, introduce
a generic constant briefly and discuss results of several examples.

Introduction Based on our experiments with Z2SAL, especially with Z spec-
ifications that have generic constructs, Z2SAL could not translate these speci-
fications, error files were generated instead. Our finding is that Z2SAL cannot
recognize a generic constant though it has been declared in a generic constant

definition; Z2SAL treats a generic constant as a new identifier. Z2SAL has not
encountered any generic construct on Z specifications before, so this part of Z
has not been implemented yet.

A generic constant, which is one part of generic constructs, was taken as
one of our aim to extend the ability of Z2SAL. It is because the current Z2SAL
does not support a translation of either a generic constant or a generic schema
definition. Although Z2SAL can implement them some time during our research
on this redefinition of a generic constant.

A generic constant is used to introduce a new constant which uses generic
parameters [14]. By using a generic parameter, different types of a parameter
can be specified. They are specified by using different literals such as X, Y, Z
and others. A generic constant has a global scope in a Z specification, whereas a
generic parameter has a local scope in the particular generic constant definition.

An example of a generic constant definition is formulated as below:

[X]
monoSequence : P(seq X)

monoSequence = {s : seq X | #(ran s) ≤ 1}

The above definition has monoSequence as the generic constant and one generic
parameter X. This generic constant definition results a set of a sequence s which
just has at the most one element.

Since a generic constant is specified in terms of generic parameters, this
constant is commonly used in formulating mathematical tool-kit operators [14],
in which these operators do not depend on the particular type of its elements in
its construction [15]. Another usage of a generic constant is to specify a general
notion which is used frequently in a system.

In a case there is no generic constant, several equivalent functions should be
formulated because each function is dedicated to one set of types of parameters;
it is such a useless and time-wasting work. Thus, a generic constant is quite
beneficial to a Z specification.

Based on our review on the SAL literature itself, a generic form cannot be
found either. Thus, it seems that Z2SAL does not support a generic constant
definition in order to be consistent with the SAL language.

A Generic Constant Redefinition System Our approach to support Z2SAL
in translating generic constant definitions is to implement a tool which will rede-
fine a generic constant definition to an equivalent axiomatic definition based on
usages of this generic constant. This approach originated of a similar behaviour
between a generic constant and an axiomatic definition; they declare a global
variable inside a Z specification. This redefinition is called an actualization pro-
cess, in which a generic type of a parameter will be actualised to its actual type
of a parameter.

Plagge and Leuschel in [7] also proposed the same method as our method for
translating a generic definition defined in a Z specification. As discussed on their
paper, generic constant definitions had not been added to a Z specification.

Our system specifies different types of generic constants. These types can be
identified based on the generic constant declarations, as given below:

– a function; the outermost operator is one of infix generic functions. A com-
plete set of these functions is ” 7→”, ”→”, ” 7�”, ”�”, ” 7→→”, ”→→” and ”�→”.
These functions are collected in one token, namely INGEN. As a function, it
will have at least one input parameter and one output parameter. This type
can be generic.

– a relation; a declaration uses a tag ”↔” in its outermost operator. This tag
has a string REL as its token. As a relation, there is no output parameter
type. In other word, the output is the relation itself; a pair of types.

– a constant; a constant means it does not require any input. Thus, a declara-
tion of this generic constant only gives us generic output parameters. This
declaration denotes none of the above tags in its outermost declaration.

The above three types of generic constants are parts of a variable declaration
grammar in the Z language. This grammar, which refers to [15], was specified in
our parser as below:

expr1 : expr1 . word REL decor expr1 . word
| expr1 . word INGEN decor expr1 . word
| expr2 . chain
| expr2
;

The first production rule indicates a relation, whereas the second one is a func-
tion. The third production rule contains CROSS obtained from expr2.chain.
Thus, this production rule can either be a function or a relation depending on
which of those first two production rules is fired previously. The last one is a
constant; both function and relation production rules are not matched.

Inevitably, a constant actualization is not always straightforward, especially
a constant implicit type. In this case, a solution is to infer an actual type from
its surrounding.

Our redefinition system is intended as a pre-processing tool which can aid
Z2SAL. An input Z specification, which consists of generic constant definitions
and usages, will be pre-processed by this tool in order to redefine its generic
constant definitions.

This tool was implemented in Java programs. It has a simple GUI to interact
with users and has also two preliminary processes: the scanner and the parser
generation. These two generators were implemented by using the JFlex scanner
generator [18] and the BYACC/J parser generator [17] respectively.

The current version of our system implemented several Z tokens which refer
to [15, 16] and several production rules of the Z grammar which refer to [15]. It
was experimented also with simple variable types.

The next sub-section discusses an example of the redefinition process. This
Z specification was taken from [19], namely the function swap.

An Example of the Redefinition Process This specification has one given
type, NAME. There are two generic constant definitions for swapping process speci-
fied on this specification. These functions, which each have two parameters, swap
an order of its parameters. Thus, after a swap, an element in the second position
will be shifted such that this element is in the first position. The first position
is vice versa.

The first definition, as shown below, has two different generic parameters: X
and Y. A generic constant name is swap2.

[X ,Y]
swap2 : X ×Y → Y ×X

∀ x : X ; y : Y • swap2(x , y) = (y , x)

The second has one generic parameter, X. Its name is swap1 and it is shown as
below:

[X]
swap1 : X ×X → X ×X

∀ x , y : X • swap1(x , y) = (y , x)

A state schema, namely State, has only one state variable, name, which is
an instance of the defined given type. There is no predicate specified on this
schema.

The initialization schema, Init, refers to the post state of the state schema.
This schema does not declare its own variable and predicate.

There is one operational schema, Swap, which calls these generic constants.
This schema does not change a state of this system indicated by Ξ State. This
schema was specified as below:

Swap
a? : NAME ; a!, b! : NAME ; c? : N; c! : N; ΞState

(b!, a!) = swap1[NAME ,NAME](name, a?)
(c!, a!) = swap2(name, c?)

The first usage of generic constant definitions uses explicit type of parameters
in addition to parameters required by this function. Our system generated two
axiomatic definitions for these usages as shown below:

swap1 : NAME ×NAME → NAME ×NAME

∀ x , y : NAME • swap1(x , y) = (y , x)

swap2 : NAME × N→ N×NAME

∀ x : NAME ; y : N • swap2(x , y) = (y , x)

Furthermore, the explicit type has been deleted from the first usage since Z2SAL
does not support this type of parameter. Thus, the first usage has also been
modified by our system as below:

(b!,a!) = swap1(name,a?)

Result and Discussion The generated specification of the above example could
be translated by Z2SAL. A SAL file, which was generated by Z2SAL, could also
be verified by the SAL model checker, but it failed to be simulated by the SAL
model checker. This simulator generated an unsupported error of a failure to
convert function application.

Furthermore, if a theorem was added to the generated SAL file, this SAL file
could not be verified either by the SAL model checker. Thus, it is an issue of the
redefinition system.

The current Z2SAL translates a function, relation and constant in the base
module, in which Z2SAL defines State as a default name for a module and
puts variable declarations inside a definition clause. As a result, an error of in-
compatible type in the equality operator or a fail to convert function application
produced by the SAL model checker or simulator, as given earlier, was sometimes
experienced during our experiments with user-defined functions.

Based on our review on the SAL literature, a user defined function, relation
and constant are always declared outside the module and are put inside a context
clause, specifically in a constant declaration, instead. Thus, the same method as
SAL’s method was proposed. This method can be applied to a user defined
function and constant, but it is not applicable to a user defined relation since a
relation does not have a type for its output parameter.

A constant declaration has a syntax as below [9]:

ConstantDecl := Identifier [(VarDecls)] : Type[= Expr]

Thus, the generated SAL file was modified to adapt a constant declaration for-
mulated by SAL. Both the above function definitions were formulated manually
on the generated SAL file. They are shown below:

swap1(q 1 : NAME, q 2 : NAME): B NAME X B NAME = (q 2,q 1);

swap2(q 3 : NAME, q 4 : NAT): B NAT X B NAME = (q 4,q 3);

Original declarations generated by Z2SAL on these functions were deleted.
A few theorems were added to this specification as shown below:

th1: theorem State |- G(FORALL (i: NAME,j: NAT): swap2(i,j) = (j,i));

th2: theorem State |- G(FORALL (i,j: NAME):

i = j => swap1(i,j) = swap1(j,i));

th3: theorem State |- G(FORALL (i,j: NAME): swap1(i,j) = swap1(j,i));

The first two theorems are valid; the swapping system could satisfy both
properties. The last theorem is invalid since the swap function will not give us
the same result for different parameters.

There is another issue relating to an abbreviation definition and a lambda
expression during redefinition of a generic constant definition. Both these issues
will be discussed in the next sub-sections.

Generic Abbreviation Definitions Z2SAL supports an abbreviation defini-
tion, but not the generic one. Declaring a global constant by using an abbrevia-
tion definition is common in writing Z specifications. Thus, a generic abbrevia-
tion definition was taken also into our consideration.

In a case of a generic abbreviation, it is not enough just to work with an
actualization of a generic type. Other issue here is a set comprehension definition
because the generic abbreviation definition is usually defined by using a set
comprehension definition. However, Z2SAL does not support an abbreviation
definition consisting of a set comprehension either.

For example, look at a generic abbreviation definition as below [14]:

monoSequence[X] == {s : seq X | #(ran s) ≤ 1}

Based on the Z literature, a generic abbreviation definition can be rewritten to a
generic constant definition. Both these definitions declare global constants in the
related Z specification, in this case the type of the generic constant is a constant.

The expression in the right hand side of a tag ”==” uses a set comprehension
definition, which denotes that monoSequence is a set of a sequence of X. The body
of this generic definition is obtained from the expression after the tag ”==”.

Thus, a generic abbreviation definition is firstly rewritten to a generic con-
stant definition. This rewriting is performed manually and automatically in order
to prove its correctness. This equivalent definition was given in the Section 3.1.
Afterwards, this generic constant definition is redefined to an axiomatic defini-
tion.

Lambda Expressions Another kind of generic forms is an expression λ, which
is used to define a function without specifying a name [14]. Z2SAL does not sup-
port this expression which is common in generic constant definitions or in other
definitions in a Z specification generally. Our approach is to rewrite a lambda
expression automatically and manually to an equivalent expression without any
lambda expression. Then, it is redefined to an axiomatic definition.

For example, a generic constant definition as formulated below consists of
the lambda expression [14]:

[X]
commonSubseq : ((seq X)× (seq X))→ P(seq X)

commonSubseq = (λ s, t : seq X • allSubseqs ∩ allSubseqt)

The lambda expression in the above definition can be rewritten to an equivalent
definition as below:

commonSubseq = {s, t : seq X • ((s, t), allSubseq(s) ∩ allSubseq(t))}

or another equivalent one as given below:

∀ s, t : seq X • commonSubseq(s, t) = allSubseqs ∩ allSubseqt

A lambda expression definition, (λ S • E), represents a function and has argu-
ments which are taken from S. An output of this expression is the value of E [15].
As given by the first equivalent definition above, the lambda expression is equiv-
alent to a set comprehension, {S • (T ,E)}, in which T is a characteristic tuple of
S. In a set comprehension, a characteristic tuple is obtained from its declaration.
Thus, (s,t) was a characteristic tuple of the above set comprehension.

During our experiment, a set comprehension definition, which has a decla-
ration of many parameters of the same type, cannot be translated by Z2SAL.
Based on the SAL literature, only one parameter can be declared in one defini-
tion of a set comprehension. The SAL syntax [9] for a set expression is given as
below:

SetExpression := SetListExpression | SetPredExpression
SetListExpression := {{Expression}+, }
SetPredExpression := {Identifier : Type = Expression}

Thus, our approach is to rewrite the first equivalent lambda expression to the
second equivalent one.

Several results collected from our experiments are given and discussed on the
next sub-section.

Summaries of Experiments on the Redefinition System The number of
experiments on several Z specifications are presented on Table 1. These experi-
ments run on a laptop with a 1.30GHz Genuine Intel(R) CPU U7300 and 2.00
GB RAM.

The second column of Table 1 indicates whether the SAL file, generated by
Z2SAL from the Z specification resulted by the redefinition system, required
a modification to be verified by the SAL model checker or simulated by the
SAL simulator. This modification was accomplished manually on the SAL file.
It involved rewriting a user defined function and placing this function on which
SAL put its function. A couple of examples of this rewriting was given earlier in
this section. This modification also involved rewriting other parts of a SAL file.

Table 1. Several Experiments with the Redefinition System

Z Specification Details Verification time in secs

(*.tex) #Theorem = 0 | #Theorem > 0

bbook Modified SAL function | 0.842

bbook map Modified SAL function 0.016 | 0.25

bbook uni Modified SAL function and 0.031 | 0.406
other parts of SAL file |

bbook map uni Modified SAL function and | 0.359
other parts of SAL file |

fDomRan Modified SAL function 0.015 |
fEmpty OK | 0.093

fEmptyImpl OK | 0.109

fFirst Modified SAL function 0.015 | 0.187

fHead Modified SAL function 0.031 |
fHeadFunc Modified SAL function and 0.031 |

could not be simulated: The |
set of initial states is empty |

fMaxComSubSeq Modified other parts of SAL 0.047 |
file and could not be simula |
ted: An out of memory error |

fMaxComSubSeq 1 Modified other parts of SAL 0.032 |
file and could not be simula |
ted: An out of memory error |

fMaxComSubSeq orig Modified other parts of SAL 0.032 |
file and could not be simula |
ted: An out of memory error |

fMonoSeq OK. Long simulation 0.047 |
fMonoSeq 1 OK. Long simulation 0.031 |
fSwap Modified SAL function 0.016 | 0.141

fUniqSeq Ok. Could not be simulated: 0.062 |
An out of memory error |

fUniq1Seq Ok. Could not be simulated: 0.031 |
An out of memory error |

fUniq2Seq Ok. Could not be simulated: 0.015 |
An out of memory error |

tn Modified other parts of SAL 0.03 |
file and could not be simula |
ted: An out of memory error |

tnImpl Modified other parts of SAL 0.0 |
file and could not be simula |
ted: An out of memory error |

fFileStorage Could not be translated by N/A
Z2SAL

fSet Modified SAL function 0.0 |
and other parts of SAL file |

Such a modification could be a bug in the translation of associated Z specification
by Z2SAL. It could also be a mismatch between the Z language and the SAL
language.

The third column shows verification times of each SAL file. A SAL file which
has one verification time means that it was not verified for another case of the
number of theorems. A SAL file which has two verification times is a SAL file
which at first could be verified by the SAL model checker, but later it could
not be verified if at least one theorem was added to this SAL file. Such a SAL
file usually could not be simulated either by the SAL simulator even there is no
theorem.

Based on our experiments as shown in Table 1, there were three SAL files
which could not be verified by the SAL model checker, though their functions
have been modified to adapt a method used by SAL as discussed earlier. These
files are output bbook uni as the SAL file generated from the output of
bbook uni.tex, output bbook map uni as the SAL file generated from the
output of bbook map uni.tex and output fSet as the SAL file generated
from the output of fSet.tex. The error related to incompatible types in the
equality operator. This error could be seen as a mismatch as mentioned above.

The SAL model checker identified that the type of birthday is not compat-
ible with the type of the first argument of a function uniSet in the first and
second SAL files. The function uniSet which is a generic constant definition was
specified as below:

[X]
uniSet : (PX)× (PX)→ (PX)

∀S ,T : (PX) • uniSet(S ,T) = {x : X | x ∈ S ∨ x ∈ T}

This function combines two sets of elements which have the same types. As can
be seen, this function requires two parameter inputs. Both of them have the
same types which are the same as the type of the output.

A usage of the above generic constant was specified as follows:

birthday’ = uniSet(birthday, { name? 7→ date? })

As can be seen from the above generic constant definition, the type for the first
parameter is a set of X and it is said as an expected type. On the other hand,
birthday is the first parameter passed to uniSet; the type of birthday will be
the actual type for this parameter. A declaration of the function birthday is as
below:

birthday: NAME 7→ DATE

birthday is a state variable, which is a partial function from NAME to DATE.

Our system generated the axiomatic definition uniSet as below:

uniSet : (P(NAME ×DATE))× (P(NAME ×DATE))
→ (P(NAME ×DATE))

∀S ,T : (P(NAME ×DATE)) •
uniSet(S ,T) = {x : (NAME ×DATE) | x ∈ S ∨ x ∈ T}

As can been from the above definition, the type of birthday has been modified
to its equivalent type. It is done so to ease the unification of the expected type
X and the actual type NAME 7→ DATE.

Based on the Z literature, a function type can be rewritten to a relation
type. Several constraints should also be added to present behaviour of a related
function. Furthermore, a relation is equivalent to a set of a pair of types.

X ↔ Y ≡ P(X ×Y)

Thus, it seems that SAL failed to recognize that birthday had an equiva-
lent type to the first argument of the user-defined function uniSet. This error
said that there was incompatible type between the output of uniSet, which
was Set C B NAME X B DATE I and the right hand side of the equality
operator, which was [NAME X DATE -> bool]. Afterwards, a sequence of mod-
ifications was performed to the associated SAL file lines.

The last error produced by the SAL model checker is as below:

Error: [Context: output bbook uni mod, line(62), column(29)]:

Type mismatch in the function application.

Expected type:

[set{output bbook uni mod!NAME X DATE}!Set,
set{output bbook uni mod!NAME X DATE}!Set]
Actual type:

[output bbook uni mod!Set C NAME X B DATE I,

set{output bbook uni mod!NAME X DATE}!Set]

The related SAL lines are as follows:

61 NOT set {NAME;} ! contains?(known, name?) AND

62 birthday’ = uniSet((birthday, set {NAME X DATE;} !

63 singleton((name?, date?)))) AND

64 invariant ’

In line 62, the type of uniSet after modification is a pair of set {NAME X DATE;}
! Set and set {NAME X DATE;} ! Set. This type was not compatible with the
actual type passed to uniSet which was a pair of Set C NAME X B DATE I

and set {NAME X DATE;} ! Set. The type Set C NAME X B DATE I is
an alias for [NAME -> B DATE], specified by Z2SAL.

Although a function is special type of a relation and a relation is a set of
a pair of types in the Z language, it seems that SAL did not think both types
of the first argument of uniSet were the same. Thus, this incompatible type

was solved manually. This is because our tool has not been able to perform this
modification automatically.

Our last modification kept the same alias for birthday, but this time the
alias represents a relation, not a function any more. It is shown below:

Set C NAME X B DATE I : TYPE = set {NAME X DATE;} ! Set;

.
This change affects the usage of birthday; it cannot any longer be used as a
function.

function {NAME, B DATE; DATE BB} ! partial?(birthday) AND

As one effect, the above line was deleted from the old SAL file.

known = relation {NAME, DATE;} ! domain(birthday) AND

Another effect is the above line was replaced by a line below:

known = function {NAME, B DATE; DATE BB} ! domain(birthday) AND

As well as a line as below:

date ’ = birthday(name?) AND

was replaced by a line below:

set {NAME X DATE;} ! contains? (birthday, (name?, date ’)) AND

Finally, the modified SAL file could be verified by the SAL model checker and
simulated by the SAL simulator.

The same function was also a source of the error in the third SAL file, but this
time its first actual parameter is used. A usage of this function in the associated
Z specification is as follows:

used’ = uniSet(used, {n})

A state variable used is a set of N1 and a variable n is an instance of N1.
An axiomatic definition generated for the above usage is as below:

uniSet : (PN1)× (PN1)→ (PN1)

∀S ,T : PN1 • uniSet(S ,T) = {x : N1 | x ∈ S ∨ x ∈ T}

After a similar modification as performed in both SAL files above, the modified
SAL file could be verified and simulated by the SAL tool.

Another finding is that a few SAL files, which could be verified by the SAL
model checker, could not be simulated by the SAL simulator due to an out

of memory error as can be seen on the Table 1. These SAL files usually have
sequences or a set inside other sets. Currently, this error has not been solved.

Inevitably, there is one of our experiments which could not be translated
by Z2SAL as shown by ”N/A” in the Table 1. It is because this Z specification
contains a function which its range is also a function. Z2SAL does not support
such a type. A quick solution is to rewrite such a function. However, another
error relating to a tag ”. .” was experienced which seems it is another bug in
Z2SAL.

Another aspect of the Z notation in our study is the schema calculus. This
aspect is described in the next sub-section.

3.2 Schema Calculus Definitions

This sub-section discusses other type of our support which is a schema calculus
expansion.

Introduction Z2SAL supports a translation of several schema calculus such as
a schema inclusion, the operator ∆ and the operator Ξ, but they must be spec-
ified either vertically or horizontally in a schema. However, if a new schema is
constructed from earlier schemas, Z2SAL does not support this schema construc-
tion. Thus, it seems that Z2SAL does not support schema calculus definitions.

The constructed schema is specified by using =̂. It is the same as the sup-
ported schema calculus, but the constructed schema does not use [and] to
surround its declaration of variables and predicates.

The constructed schema is used commonly to define a more complex, modular
and a huge specification of a system. Schemas that have been specified can be
reused to specify a new schema. It is because every schema has its distinctive
operation in a specification, called ’schema separation’ [2].

A Schema Calculus Expansion System Our approach is to construct a new
schema by expanding other schemas, in which they are connected by schema
operators. This system was included in the support tool for model checking Z
specifications, as well as the redefinition system.

Since every schema operator has its own definition, a schema operator affects
how the expansion is done. The expansion means that all unique variables of in-
volved schemas are listed in the new schema. It also means that predicates which
are read from the involved schemas are added. These predicates are combined
using schema operators.

There is a prerequisite for operating two schemas; the same or common vari-
ables should have the same type. Furthermore, in a case of the negation operator,
normalisation is also required.

Normalisation is to define explicitly the constraint given by the declaration
part of the related schema. This constraint is specified in the predicate part. Nor-
malisation should be performed just before the negation. This process is applied

also to other schema operators for the sake of easiness. Several normalisation
rules were specified in our system as below:

– Every N or N1 in a declaration part is rewritten to a type of Z.
– Every seq or seq1 is changed to P(Z×newVal), newVal is a type which comes

after seq or seq1. The previous rule is applied also to newVal.
– Every function is changed to a pair of its left hand side type and its right

hand side one. Both the above rules are also applied to the type in the left
and in the right.

In general, after each schema is expanded, variables and predicates will be
collapsed to a reference of a state schema. This collapse benefits the new schema
to get a more compact schema and to avoid re-declarations of state variables.

Our system can expand several schema operators such as conjunction ∧,
disjunction ∨, negation ¬, implication⇒, bi-implication⇔, hiding \, renaming
/, composition o

9, universal quantifier ∀ and existential quantifier ∃. Our system
can also perform a simple simplification over a predicate part. However, a schema
calculus definition cannot be a complex definition.

The next sub-section describes an example from our experiments with this
system.

An Experiment with the Schema Calculus Expansion System An ex-
ample, expandingschema 3.tex, will be presented in this sub-section. This
example was taken from [2], but has been modified in some places for our ex-
periments.

This example represents a library system specification. The specification has
four state variables:

– stock is a partial function from COPY to BOOK. It gives us information about
what copies a book has.

– issued is a relation between a copy of a book and a reader. It gives us
information about which copy of a book each reader has.

– shelved is finite set of COPY.
– readers is a finite set of READERS.

This specification has also three given types: COPY, BOOK, READER.
There is one schema calculus definition specified in this specification, which

uses the Z schema composition operator, o
9. It is shown as below:

Donate =̂ EnterNewCopy o
9 RegisterReader.

This operator will combine the second schema with the first schema, in which
the result of the first schema is an input for operating the second schema.

The schema composition consists of the number of operations taken from
other schema operators. Renaming is the first operation to take place: rename
the same state variables so as the primed ones in the first schema and non-primed
ones in the second schema have the same name of variables. Afterwards, these

renamed schemas are combined using a conjunction operator. The next process is
to hide the common renamed variables in a declaration part of the new schema
and add an existential quantification which binds these hidden variables in a
predicate part of the new schema.

The new schema, Donate, was constructed by our system as given below:

Donate
∆Library ; b? : BOOK ; r? : READER; rep! : Report

∃ c : COPY | c 6∈ dom stock • (stock ′ = stock ⊕ {c 7→ b?} ∧
shelved ′ = shelved ∪ {c}) ∧ r? 6∈ readers ⇒
(readers ′ = readers ∪ {r?} ∧ rep! = Ok) ∧
r? ∈ readers ⇒ (readers ′ = readers ∧ rep! = ReaderAlreadyRegistered)
∧ issued ′ = issued

A theorem as given below was added to the generated SAL:
th1: theorem State |- G(shelved = set{COPY;}!empty);

It says that shelved is always empty, which is invalid since a c of type COPY can
be added to shelved by performing EnterNewCopy or Donate. Indeed, the SAL
model checker reported a counter-example on the verification of this SAL file.

Result and Discussion This specification requires a simplification which is ap-
plied to the final output, otherwise there will be re-declared state variables. Our
system could perform a simple simplification to collapse all state variables and
predicates to a reference of the state schema.

As mentioned previously, the first process of a schema composition is renam-
ing which is to rename several state variables to the common names. In this
system, the common name is specified to be the same as the name of the state
variable, but 0 will be added at the end of this variable. This simplification is
achieved by substituting all renamed common variables for their appropriate
values obtained from related predicates.

The above example could be translated by Z2SAL. It could also be verified
and simulated by the SAL tool.

Below sub-section summarizes results obtained from our experiments with
this system.

Summaries of Experiments with the Expansion System Re-declaration
of state variables is also an issue of implementations of renaming and hiding
operations. Since a simplification is hard to apply on both operations, these
operations cannot be further implemented at the moment.

The current Z2SAL assumes that the first schema definition in a Z specifi-
cation is a state schema and the second one is an initialization schema. Z2SAL
defines also one base module in each SAL specification and accepts only one
state schema in each Z specification input, though both SAL and Z allow many
modules and state schemas respectively in one specification.

A SAL module specifies a transition system of a finite-state automaton. A Z
schema represents a state of a system and a collection of these schemas models
behaviour of the system. A state schema is a combination of state variables and
predicates of a system.

A restriction on the number of state schemas in a Z specification is an issue of
performing a negation in a schema expansion. Variables and negated predicates
in the constructed schema cannot be collapsed into a state schema inclusion; a
problem of re-declared variables. The only way to solve this problem is to define
at least two state schemas: the first state schema just defines state variables;
the second one defines an inclusion to the first schema as well as defines state
predicates. However, Z2SAL does not support many state schemas either as
discussed earlier.

This restriction affects also how a renaming and a hiding are applied to. Both
schema operators cannot be applied to the initialization schema and operational
schemas due to the above same problem and instead to the state schema. Further-
more, Z2SAL also enforces us to define the same name for both the constructed
schema and the state schema. Thus, the application of these two operators will
modify the whole specification.

Another issue in a schema expansion is the order or the binding of schema op-
erators, especially when brackets are not added in a definition of schema calculus.
Fortunately, operators bindings and associativities can be defined by using built-
in options of the BYACC/J parser generator [17]: left, right and nonassoc,
which mean left, right and no grouping respectively. Afterwards, several actions
can be added in associated grammars to define information about these orders.
The order of operators tells us the precedence among them, which is getting
higher position, the lower the precedence. Several of these orders are given in
the [15].

Table 2 shows us several results from our experiments. As can be seen
from Table 2, a simplification has been performed on an output of specifica-
tion expandingschema 1. It is indicated by two verification times in associated
columns. Outputs of expandingschema 3, expandingschema 4 and expandingschema 5

have two verification times in one column. The first time is a verification time
with no theorem and the second one is a time with one theorem. There are two
specifications that have many schema calculus definitions: expandingschema 4

and expandingschema 8. ”N/As” in several rows mean that the related speci-
fication could not be translated by Z2SAL. All of these specifications contain
re-declarations of state variables. It is because these variables could not be col-
lapsed by our system to references of a state schema.

4 Conclusion and Future Work

It has been shown in both tables that all our running examples could be redefined
or expanded by our system. Several of them could also be translated by Z2SAL,
verified by the SAL model checker, or simulated by the SAL simulator.

Table 2. Several Experiments with the Expansion System

Z Specification Details Verification time in secs

(.tex) Non-simplified | Simplified

expandingschema 1 ”∨” 0.063 | 0.031

expandingschema 2 ”∧” 0.062 |
expandingschema 3 ”o

9” 0.03 |
0.733 |

expandingschema 4 ”∧” 0.016 |
”∨, ∨” |
”∨” |

2.044 |
expandingschema 5 ”∧, ¬, ∧” 0.031 |

1.654 |
expandingschema 6 ”∧, [,]” 0.031 |

0.686 |
expandingschema 7 ”¬, ∧, [,]” N/A

expandingschema 8 ”∧, [,]” N/A

”¬, ∧, [,]”
”∨”

expandingsch2 4 ”¬” N/A

expandingsch3 1 ”⇒” 0.015 |
expandingsch3 2 ”∧,⇒” 0.032 |
expandingsch3 4 ”⇒, ∧” 0.016 |
expandingsch4 1 ”⇔” 0.015 |
expandingsch4 2 ”∧,⇔” 0.031 |
expandingsch5 1 ”[, /,]” N/A

expandingsch5 2 ”[, /, /,]” N/A

expandingsch6 1 ”\” N/A

expandingsch6 2 ”\” N/A

expandingsch7 1 ”o
9” 0.031 |

expandingsch8 1 ”∀” N/A

expandingsch8 2 ”∀” N/A

expandingsch8 3 ”∀, ∧” N/A

expandingsch8 6 ”∃” N/A

Redefinition and schema expansion, which pre-process a Z specification, can
benefit the scope of translation of Z2SAL. It is because a Z specification can
consist of a generic constant, or a schema calculus definition. This fact can sup-
port Z2SAL to translate a variety of Z specifications, which at the end can also
support model checking Z specifications. However, our method on implement-
ing this system, especially the schema calculus expansion, seems that it is not
feasible to a huge and complex specification. Expanded schemas can make the
specification be more complex.

Regarding an out of memory error which is often encountered during the
simulation, this issue can be put as a future work. One idea here is to apply
abstraction to the related specification.

Re-declaring state or global variables can be approached by implementing
a better simplification in predicates. It can also include upgrading Z2SAL to a
version that accepts many state schemas and references to them.

Our approach to a SAL translation of a user defined function or constant
can be automated to get big advantage of it. There are two options for this
automation: implementing it as an extension to this system or adding it as an
extension to Z2SAL system. It seems that the second option is an easier method
to implement.

Another future work is to be able to run a more complex, to some extent, Z
specification input. This fact requires also an extension to this system.

Acknowledgment

The author would like to thank John Derrick, Siobhán North and Anthony J.H.
Simons for giving the author a chance to work with their Z2SAL and discussions
on this tool. A lot of thanks are dedicated to ISIHEMORA The Republic of
Indonesia for its financial support on this study.

References

1. Jackson, D.: Abstract model checking of infinite specifications. FME’94: Indus-
trial Benefit of Formal Methods. Springer, 519–531 (1994)

2. Potter, B., Till, D., and Sinclair, J.: An introduction to formal specification and
Z. Prentice Hall PTR (1996)

3. West, M.M.: Issues in Validation and Executability of Formal Specifications in
the Z Notation. Thesis of University of Leeds (2002)

4. Woodcock, J. and Davies, J.: Using Z: specification, refinement, and proof.
Prentice-Hall, Inc. (1996)

5. Derrick, J., North, S., and Simons, A.J.H.: Z2SAL: a translation-based model
checker for Z. Formal aspects of computing. Springer, 23 1, 43–71 (2011)

6. Malik, P., Groves, L. and Lenihan, C.: Translating z to alloy. ASM, Alloy, b and
Z. Springer, 377–390 (2010)

7. Plagge, D. and Leuschel, M.: Validating Z specifications using the ProB animator
and model checker. Integrated Formal Methods. Springer, 480–500 (2007)

8. Bolton, C.: Using the alloy analyzer to verify data refinement in Z. Electronic
Notes in Theoretical Computer Science. Elsevier, 137 2, 23–44 (2005)

9. De Moura, L., Owre, S. and Shankar, N.: The SAL language manual. Computer
Science Laboratory, SRI International, Menlo Park, CA, Tech. Rep. CSL-01-01
(2003)

10. Smith, G. and Wildman, L.: Model checking Z specifications using SAL. ZB 2005:
Formal Specification and Development in Z and B. Springer, 85–103 (2005)

11. Derrick, J., North, S., and Simons, A.J.H.: Issues in implementing a model
checker for Z. Formal Methods and Software Engineering. Springer, 678–696
(2006)

12. Simons, AJH: The Z2SAL User Guide. Accessed from
http://staffwww.dcs.shef.ac.uk/people/A.Simons/z2sal/userguide.html (2012)

13. Bensalem, S., Lakhnech, Y. and Owre, S.: Computing abstractions of infinite
state systems compositionally and automatically. Computer Aided Verification.
Springer, 319–331 (1998)

14. Barden, R., Stepney, S. and Cooper, D.: Z in Practice. Prentice-Hall, Inc. (1995)
15. Spivey, J.M.: The Z notation. Prentice Hall New York (1989)
16. King, Paul: Printing Z and Object-Z LATEXdocuments. Department of Computer

Science, University of Queensland. (1990)
17. Hurka, T.: BYACC/J. Accessed from http://byaccj.sourceforge.net (2008)
18. Klein, G.: JFlex - The Fast Scanner for Java. Accessed from

http://www.jflex.de/index.html (2015)
19. Rann, D. and Turner, J. and Whitworth, J.: Z: a Beginner’s Guide. CRC Press

(1994)

