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Abstract

Telegraph equation is a partial differential equation which includes

the one dimensional wave equation. This equation can be used to

solve several problems that physically regulate voltage and current

in the electricity transmission line in distance and time. In this

study, telegraph equation and partial integrodifferential equation were

analyzed and resolved by double Laplace transform. This equation was

accompanied by initial values and boundary values solved by Laplace

transform. Next, there are some examples of equations to discover a

solution. The solution of these examples showed that double Laplace

transform is one method that can be used to solve telegraph equation.

Then the solutions are simulated in graphical form which shows the

waveform of the equation.
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Introduction 

The telegraph equation is a differential partial equation developed by 
Oliver Heaviside in 1880 [1]. This equation included one wave dimensional 
equation (hyperbolic), which physically regulates the voltage and flow in the 
electricity transmission line with distance and time [2]. 

One application of telegraph equation is the solution of communication 
system problems involving the transmission of signals from one point to 
another [3]. So many mathematical methods can be used to obtain telegraph 
equation solutions, which is Laplace transform. Laplace transform is a 
method to solve homogeneous wave equations, whereas double Laplace 
transform of non-homogeneous equations [4]. 

Based on the description above, telegraph equations and partial 
integrodifferential equations will be solved by double Laplace transform. 
These equations are accompanied by initial values and boundary values, 
which are solved by Laplace transform. 

The definitions are given by Debnath [5]. The double Laplace transform 
is defined by: 

          0 0 ,,,, dtdxtxfeespFtxf stpxtx  (1) 

where 0, tx  and p, s are complex numbers. 
Double Laplace transform for the first order partial derivative is defined 

as follows [6]: 
      ,0,,, pFspsFt

txftx    (2) 

double Laplace transform for second order partial derivative with respect to 
x is given by 

        ,,0,0,, 2
2

2
x

sFspFspFpx
txfxx 





  (3) 
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and double Laplace transforms for second partial derivative with respect to t 
is given by 

         .0,0,,, 2
2

2
t
pFpsFspFst

txftt 





  (4) 

Double Laplace Transform Analytic on Telegraph Equation 
There are so many problems in telegraph equation, for example, 

equation of Jang [2] as 
  ,, txfuuuu tttxx   (5) 
where 0  is a constant. 

Equation (5) is then fitted to the initial value and the limit values are 
taken from Kashuri et al. [7] 

       ,0,,0, 21 xgxuxgxu t   
       .,0,,0 21 tftutftu x   (6) 

Taking double Laplace to (5), we get 
    txfuuuu ttttxxxtx ,   
            0,0,,,0,0, 22 pUpsUspUssUspUspUp tx   

        spFspUpUspsU ,,0,,   
         0,,0,0,122 psUsUspUspUssp x   

     ,,0,0, spFpUpUt   (7) 
where     .,, txuspU tx  

Taking single Laplace transform to initial and boundary values (6), we 
get 

      ,,0,0 1 sFsUtu   
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      ,,0,0 2 sFsUtu xx   
      ,0,0, 1 pGpUxu   

       .0,0, 2 pGpUxu tt   (8) 
By substituting (8) in (7), we obtain 

     
 

       
  .1

,
1, 22 12122 21 











 ssp

spFpGpGpsG
ssp

sFspFspU  (9) 

Applying inverse double Laplace transform to (9), we obtain the solution 
of (5) in the form 

 txu ,  
   

 
       

  .1
,

1 22 12122 2111 


 











 
ssp

spFpGpGpsG
ssp

sFspFsp   

 (10) 
Double Laplace Transform Analytic on Partial 

Integrodifferential Equation 
Integrodifferential equation is an integral equation containing the 

derivatives at the same time in it [8]. Consider the following general partial 
integrodifferential equation as in [9]: 

         x t
xxtt txfddutxguuu 0 0 ,,,,  (11) 

with the initial condition 
        ,0,,0, 21 xgxuxgxu t   (12) 
and boundary conditions 
        .,0,,0 21 tftutftu x   (13) 
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Taking double Laplace to (11), we get 

      txfddutxguuu tx
x t

xxtttx ,,,0 0  


     

        sUspUspUspGps x ,0,0,,122   
     .,0,0, spFpUpsU t   (14) 

Taking single Laplace transform to initial value (12) and boundary value 
(13), we get 

      ,,0,0 1 sFsUtu   
      ,,0,0 2 sFsUtu xx   
      ,0,0, 1 pGpUxu   

       .0,0, 2 pGpUxu tt   (15) 
By substituting (15) in (14), we obtain 

     
  

     
   .,1

,
,1, 22 2122 21 











 spGps

spFsFspF
spGps

pGpsGspU  (16) 

Applying inverse double Laplace transform to (16), we obtain the solution of 
(11) in the form 

 txu ,  

    
  

     
   .,1

,
,1 22 2122 2111 


 











 

spGps
spFsFspF

spGps
pGpsGsp   (17) 

Example 1. In this case, the nonhomogeneous telegraph equation is 
given by 
 ,6 2txtttxx euuuu   (18) 
with the initial value 
     ,20,,0, xtx exuexu   (19) 
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and the limit value 
     .,0,,0 22 txt etuetu   (20) 
Taking  double Laplace to (18), we get 

   txttttxxxtx xuuuu 26    
           0,0,,0,0,122 pUpsUsUspUspUssp tx   

      .21
60,  sppU  (21) 

Taking single Laplace transform to initial value (19) and boundary value 
(20), we get 

       ,2
1,0,0  ssUtu  

       ,2
1,0,0  ssUtu xx  

       ,1
10,0,  ppUxu  

        .1
20,0,  ppUxu tt  (22) 

By substituting (22) in (21), we obtain 

          .1
1

21
1, 22

22













 sspsp

sspspU  (23) 

Applying inverse double Laplace transform to (23), we obtain the 
solution of (18) in the form 
       .21

1, 211 txsp esptxu      (24) 

The exact solution of telegraph equation is   ., 2txetxu   
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We put domain of distance 50  x  and domain of time 50  t  on 

the exact solution of this telegraph equation. 

 
Figure 1 

Figure 1 shows that peak points of domain 50  x  and domain of 
time 50  t  are, respectively, at 5x  and .5t   

Example 2. In this case, the nonhomogeneous telegraph equation is 
given by 
 ,sin63 xeuuuu ttttxx   (25) 
with the initial value 
     ,sin0,,sin0, xxuxxu t   (26) 
and the limit value 
     .,0,0,0 tx etutu   (27) 
Taking double Laplace to (25), we get 

   xeuuuu tttttxxxtx sin63    
           0,0,,0,0,1322 pUpsUsUspUspUssp tx   

      .11
60,3 2  sppU  (28) 
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Taking single Laplace transform to initial value (26) and boundary value 

(27), we get 
     ,0,0,0  sUtu  
       ,1

1,0,0  ssUtu xx  

       ,1
10,0, 2  ppUxu  

        .1
10,0, 2  ppUxu tt  (29) 

By substituting (29) in (28), we obtain 
   

      .13
1

11
13, 222

22










 sspps

sspspU  (30) 
Applying inverse double Laplace transform (30), we obtain the solution 

of (25) in the form 
       .sin11

1, 2
11 xepstxu tsp 




    (31) 

The exact solution of standard telegraph equation is   .sin, xetxu t  
We put domain of distance 100  x  and domain of time 100  t  

on the exact solution of this telegraph equation. 

 
Figure 2 
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 Figure 2 shows that domain 100  x  and domain of time ,100  t  
waves from the equation solution move up and down. 

Example 3. In this case, partial integrodifferential equation is given by 
     x t txtxtxxxtt xteeddueuuu 0 0 2,2  (32) 

with the initial value and the limit value 
        .,0,,0,0,,0, txtxtx etuetuexuexu   (33) 

Taking double Laplace to (32), we get 
  


    x t txxxtttx ddueuuu 0 0 ,2  

 txtxtx xtee   2  

     spUspps ,11
2122    

       sUspUpUpsU xt ,0,00,0,   

        .11
2

11
1

22  spsp  (34) 

Taking single Laplace transform to initial and boundary value (33), we 
get 

       ,1
1,0,0  ssUtu  

       ,1
1,0,0  ssUtu xx  

       ,1
10,0,  ppUxu  

        .1
10,0,  ppUxu tt  (35) 
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By substituting (35) in (34), we obtain 

       
   

   
      .2111

11
11

2111, 2222
22













 spps
sp

sp
sppsspU  

 (36) 
Applying inverse double Laplace transform to (36), we obtain the solution of 
(32) in the form 

       .11
1, 11 txsp esptxu      (37) 

The exact solution of standard partial integrodifferential equation is 
  ., txetxu   

We put domain of distance 31  x  and domain of time 42  t  on 
the exact solution of this telegraph equation 

 
Figure 3 

Figure 3 shows that peak points of domain 31  x  and domain of 
time 42  t  are, respectively, at 3x  and .4t  
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Conclusion 

We have applied double Laplace transform to obtain exact solution of 
telegraph equation and partial integrodifferential equation. The solutions of 
the equations are simulated in graphical form which shows the waveform of 
the equation. 
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