eprintid: 69945 rev_number: 10 eprint_status: archive userid: 12460 dir: disk0/00/06/99/45 datestamp: 2025-02-10 02:26:37 lastmod: 2025-02-10 02:26:37 status_changed: 2025-02-10 02:26:37 type: thesis metadata_visibility: show contact_email: muh.khabib@uin-suka.ac.id creators_name: Awal Febriantono, NIM.: 20106010050 title: ANALISIS KETERBATASAN OPERATOR BESSEL-RIESZ DI RUANG LEBESGUE YANG TERDEFINISI PADA RUANG METRIK UKURAN ispublished: pub subjects: 560 divisions: jur_mat full_text_status: restricted keywords: Kernel Bessel-Riesz, Operator Bessel-Riesz, Ruang Lebesgue, Ruang Metrik Ukuran note: Malahayati, S.Si., M.Sc. dan Aulia Khifah Futhona, S.Si., M.Sc abstract: The limitations of the Bessel-Riesz operator have been extensively studied and developed by researchers, particularly in the field of mathematical analysis. This research examines the boundedness of the Bessel-Riesz operator in Lebesgue spaces defined on metric measure spaces. The Bessel-Riesz operator is a convolution of the Bessel-Riesz kernel and functions in Lebesgue spaces. Before proving the boundedness of the Bessel-Riesz operator, it is first shown that the Bessel-Riesz kernel satisfies the membership condition in the L1 space. Furthermore, the proof also utilizes the boundedness of the Hardy-Littlewood maximal operator in Lebesgue spaces. By leveraging the membership property of the Bessel-Riesz kernel in the L1 space and the boundedness of the Hardy-Littlewood maximal operator, the Bessel- Riesz operator is shown to be bounded from Lp to Lp. date: 2025-01-24 date_type: published pages: 74 institution: UIN SUNAN KALIJAGA YOGYAKARTA department: FAKULTAS SAINS DAN TEKNOLOGI thesis_type: skripsi thesis_name: other citation: Awal Febriantono, NIM.: 20106010050 (2025) ANALISIS KETERBATASAN OPERATOR BESSEL-RIESZ DI RUANG LEBESGUE YANG TERDEFINISI PADA RUANG METRIK UKURAN. Skripsi thesis, UIN SUNAN KALIJAGA YOGYAKARTA. document_url: https://digilib.uin-suka.ac.id/id/eprint/69945/1/20106010050_BAB-I_IV-atau-V_DAFTAR-PUSTAKA.pdf document_url: https://digilib.uin-suka.ac.id/id/eprint/69945/2/20106010050_BAB-II_sampai_SEBELUM-BAB-TERAKHIR.pdf