eprintid: 72924 rev_number: 10 eprint_status: archive userid: 12460 dir: disk0/00/07/29/24 datestamp: 2025-09-15 08:27:26 lastmod: 2025-09-15 08:27:26 status_changed: 2025-09-15 08:27:26 type: thesis metadata_visibility: show contact_email: muh.khabib@uin-suka.ac.id creators_name: Muhammad Arif Rakhman Azizi, NIM.: 21106050042 title: RANCANG BANGUN VISUAL STUDIO CODE EXTENSION CODEVA UNTUK CODE GENERATOR JAVA SECARA OTOMATIS MENGGUNAKAN LARGE LANGUAGE MODELS (LLMs) ispublished: pub subjects: 005.12. divisions: Informatika(S1) full_text_status: restricted keywords: Large Language Models, Fine Tuning, Ekstensi, Unsloth note: Dr. Agung Fatwanto, S.Si., M.Kom. abstract: The rapid advancement of technology has spurred a significant demand for software, yet the Coding phase, particularly in a complex language like Java, remains a time-consuming and error-prone process. To address this, a Visual Studio Code Extension named CodeVa was developed to automatically generate Java code using Large Language Models (LLMs). Developed using the Agile Extreme Programming method ology, CodeVa integrates a fine-tuned Open-source model, Qwen2.5 Instruct 7B. This model was specifically trained for Java code generation using the Parameter-Efficient Finetuning (PEFT) technique, Low-Rank Adaptation (LoRA), and the Unsloth framework. The fine-tuning process resulted in substantial improvements across various performance metrics, including an increase in the CodeBLEU score from 0.3204 to 0.3521 and significant gains in ROUGE scores ROUGE-1 from 0.1736 to 0.3705, ROUGE-2 from 0.0251 to 0.2278, and ROUGE-L from 0.0991 to 0.3252 and Pass@10 using kulal version and chen version from 73.17% to 73.78%. Usability testing of CodeVa yielded a System Usability Scale (SUS) score of 81.0, categorizing it as "excellent" and "acceptable." This indicates that CodeVa is a highly effective tool that can significantly enhance developer productivity by facilitating faster and more efficient Java Coding . date: 2025-08-14 date_type: published pages: 123 institution: UIN SUNAN KALIJAGA YOGYAKARTA department: FAKULTAS SAINS DAN TEKNOLOGI thesis_type: skripsi thesis_name: other citation: Muhammad Arif Rakhman Azizi, NIM.: 21106050042 (2025) RANCANG BANGUN VISUAL STUDIO CODE EXTENSION CODEVA UNTUK CODE GENERATOR JAVA SECARA OTOMATIS MENGGUNAKAN LARGE LANGUAGE MODELS (LLMs). Skripsi thesis, UIN SUNAN KALIJAGA YOGYAKARTA. document_url: https://digilib.uin-suka.ac.id/id/eprint/72924/1/21106050042_BAB-I_IV-atau-V_DAFTAR-PUSTAKA.pdf document_url: https://digilib.uin-suka.ac.id/id/eprint/72924/2/21106050042_BAB-II_sampai_SEBELUM-BAB-TERAKHIR.pdf