%0 Thesis %9 Masters %A R. Abdullah Hammami, NIM.: 22206051019 %B FAKULTAS SAINS DAN TEKNOLOGI %D 2025 %F digilib:72937 %I UIN SUNAN KALIJAGA YOGYAKARTA %K Peringkasan Teks, Fine-tuning, Gemma2, LLaMA3 %P 119 %T KOMPARASI PERFORMA LARGE LANGUAGE MODELS UNTUK TUGAS PERINGKASAN TEKS BERBAHASA INDONESIA %U https://digilib.uin-suka.ac.id/id/eprint/72937/ %X The rapid growth of online information, coupled with low reading interest and heterogeneous literacy levels in Indonesia, necessitates concise, accurate, and context-sensitive automatic summarization. Given Indonesian’s low-resource status, systematic evaluation of locally adapted models is warranted. This study compares four Indonesian-capable large language models—Gemma2 9B CPT Sahabat-AI v1 Instruct, Llama3 8B CPT Sahabat-AI v1 Instruct, Gemma-SEA-LION-v3-9B-IT, and Llama-SEA-LION-v3-8B-IT—on news summarization to identify the most suitable model for practical use. We employ a benchmarking protocol on the IndoSum test subset (3,762 articles), comprising preprocessing (token reconstruction and punctuation cleanup), prompt design, 8-bit quantized inference, and automated evaluation with ROUGE (1/2/L; precision, recall, F1), BLEU, METEOR, and BERTScore. Inference is executed in four batches to meet computational constraints, and evaluation is standardized across models. Llama3 8B CPT Sahabat-AI v1 Instruct achieves the most balanced performance: ROUGE F1 42.05% (precision 42.27%; recall 42.68%), BLEU 25.10%, and BERTScore P/R/F1 88.68%/88.43%/88.54%. Gemma2 9B CPT Sahabat-AI v1 Instruct excels in coverage with ROUGE recall 48.23%, ROUGE F1 39.50%, BLEU 22.70%, METEOR 47.20%, and BERTScore 86.78%/89.17%/87.95%. SEA-LION models perform lower: Gemma-SEA-LION-v3-9B-IT (ROUGE P/R/F1 25.77%/37.58%/30.37%; BLEU 12.65%; METEOR 37.72%; BERTScore 84.63%/87.36%/85.97%) and Llama-SEA-LION-v3-8B-IT (ROUGE 25.22%/33.84%/28.71%; BLEU 11.06%; METEOR 34.57%; BERTScore 84.46%/86.80%/85.61%). Overall, Indonesian-optimized models (SahabatAI) are superior and more stable. Llama3 8B is preferable when balancing precision, coverage, and structural consistency; Gemma2 9B is better when recall and semantic alignment with the source are prioritized. %Z Dr. Agung Fatwanto, S.Si., M.Kom.