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ABSTRACT

In this paper we study the open-loop zero-sum linear quadratic differential game for de-
scriptor systems that have index one. We present both necessary and sufficient conditions
for the existence of an open-loop Nash equilibrium. We also relate the existence of an
open-loop Nash equilibrium with the theory of invariant subspaces.
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1 INTRODUCTION

In the last decade significant progress has been made in the study of linear quadratic differ-
ential game. A linear quadratic differential game is a mathematical model that represents a
conflict between different agents which control a dynamical system and each of them is trying
to minimize his individual quadratic objective function by giving a control to the system. For this
purpose, linear quadratic differential games have been applied in many different fields such as
economic competitions among companies, environmental management games, armed con-
flicts, and parlor games (Haurie and Krawczyk, 2000).

Although the game has been applied in many fields, however, not all systems can be repre-
sented by an ordinary differential game. These situations occur when the systems are for-
mulated as a set of coupled differential and algebraic equations. Descriptor systems can be
used to model such systems and provide the ability to model more accurately the structure
of physical systems, including non-dynamic modes and impulsive modes (Katayama and Mi-
namino, 1992).

This paper is the continuation of the work of (Engwerda and Salmah, 2009) and (Musthofa,
Salmah, Engwerda and Suparwanto, 2011) where the general linear quadratic differential game
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is considered for descriptor systems of index one. In this paper we elaborate the special impor-
tant case when the game is zero-sum. We will show that under this extra simplifying condition
it is possible to derive more explicit necessary and sufficient conditions for the existence of an
open-loop Nash equilibrium both for a finite planning horizon and infinite planning horizon. We
will also use some theory of invariant subspaces to present an existence result of open-loop
Nash equilibria when the game is defined on an infinite planning horizon. We assume that the
players act non-cooperatively and the only information they have is the present state and the
model structure (Engwerda, 2005). In this paper we solve the problem by changing the de-
scriptor differential game into ordinary differential game. A different approach for such problem
has been done by (Salmah, 2009) and (Salmah, 2006) where the problem is solved directly
without modifying into ordinary game.

This paper is going to be organized as follows; Section II will include some basic results of
linear quadratic differential games for descriptor systems and also state the main purpose of
this paper. Section III will present the main result for the zero-sum game on a finite planning
horizon while Section IV will deal with an infinite planning horizon. In Section V we study
the relationship between certain invariant subspaces and solutions of the algebraic Riccati
equation. Section VI will illustrate some result in an examples from the previous sections. At
last, section VII will conclude.

2 PRELIMINARIES

The game considered in this paper is a game described by the dynamical system

Eẋ (t) = Ax (t) +B1u1 (t) +B2u2 (t) , x (0) = x0 (2.1)

where E,A ∈ R
(n+r)×(n+r), rank (E) = n, Bi ∈ R

(n+r)×mi , ui ∈ R
mi are the actions player

i can use to control the system and x0 is the initial state. Each player has a quadratic cost
functional Ji given by

tf∫
0

{
xT (t) Q̄ix (t) + uTi (t) R̄iui (t)

}
dt+ xT (tf ) Q̄itfx (tf ) . (2.2)

We start this section by stating some required basic results (Engwerda and Salmah, 2009).
First, we recall some results from (Brenan, Campbell and Petzold, 1996) concerning the differ-
ential algebraic equation

Eẋ (t) = Ax (t) + f (t) , x (0) = x0 (2.3)

and the associated matrix pencil
λE −A. (2.4)

System (2.3) and (2.4) are said to be regular if the characteristic polynomial det (λE −A) is not
identically zero. Then, from (Gantmacher, 1959) we recall the so-called Weierstrass canonical
form.
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Theorem 2.1. If (2.4) is regular, then there exist nonsingular matrices X and Y such that

Y TEX =

[
In 0

0 N

]
and Y TAX =

[
J 0

0 Ir

]
(2.5)

where J is a matrix in Jordan form whose elements are the finite eigenvalues, Ik ∈ R
k×k is

the identity matrix and N is a nilpotent matrix also in Jordan form. J and N are unique up to
permutation of Jordan blocks.

If (2.4) is regular, then the solutions of (2.3) take the form ((Engwerda and Salmah, 2009),
(Gantmacher, 1959))

x (t) = X1x1 (t) +X2x2 (t)

where with X =
[
X1 X2

]
, Y =

[
Y T
1 Y T

2

]
, X1, Y

T
1 ∈ R

(n+r)×n, X2, Y
T
2 ∈ R

(n+r)×r, and

x1 (t) = eJtx1 (0) +
t∫
0

eJ(s−t)Y1f (s) ds, x1 (0) =
[
In 0

]
X−1x0, x2 (t) = −

k−1∑
i=0

N iY2
di

dti
f (t) ,

under the consistency condition :[
0 Ir

]
X−1x0 = −

k−1∑
i=0

N iY2
di

dti
f (0).

Here k is the degree of nilpotency of N , that is the integer k for which Nk = 0 and Nk−1 �= 0.
The index of the pencil (2.4) and of the descriptor system (2.3) is the degree k of nilpotency of
N . If E is nonsingular, we define the index to be zero. From the above formulae it is obvious
that the solution x (t) will not contain derivatives of the function f if and only if k ≤ 1. In that
case the solution x (t) is called impulse free.
Further, we assume that the degree of nilpotency of N is not more than one. Let

[
V W

]
be

an orthogonal matrix such that image V equals the image of ET and image W equals the null

space of E. Then E =
[
E1 0

] [
V W

]T
= E1V

T , where E1 is full column rank. Since we
assume the system has an index of at most one, we make the next assumptions (Engwerda
and Salmah, 2009).

Assumption 1. : Throughout this paper the next assumptions are made w.r.t system (2.1) :

1. matrix E is singular

2. det (λE −A) �= 0

3. rank
([

E AW
])

= n + r (the system has index one, see (Kautsky, Nicholas and
Chu, 1989)).

Finally, we define our main object of study in this paper, the open-loop Nash equilibrium
(Engwerda and Salmah, 2009), (Engwerda, 2005).

Definition 2.1. Assume (2.1) is regular and has index one. Let x0 be a consistent initial state
and U denote the set of bounded piecewise continuous functions. Then (u∗1, u∗2) ∈ U is an
open-loop Nash (OLN) equilibrium if for every (u1, u

∗
2) , (u

∗
1, u2) ∈ U , J1 (u∗1, u∗2) ≤ J1 (u1, u

∗
2)

and J2 (u
∗
1, u

∗
2) ≤ J2 (u

∗
1, u2).
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3 THE FINITE PLANNING HORIZON

In this section we consider the game (2.1) and (2.2) under the assumption that tf is finite.
Furthermore, to avoid the inclusion of controls in the scrap value, we make the standard as-
sumption as in (Engwerda and Salmah, 2009) and (Mehrmann, Thoma and Wyner, 1991) that

XT Q̄itfX =

[
Qitf 0

0 0

]
, i = 1, 2 , where Qitf ∈ R

n×n.

It has been shown in (Engwerda and Salmah, 2009) that with the result from Theorem 2.1,
the game (2.1) and (2.2) has a set of OLN equilibrium actions (u1 (·) , u2 (·)) if and only if
(u1 (·) , u2 (·)) are OLN equilibrium actions for the game

ẋ1 (t) = Jx1 (t) + Y1B1u1 (t) + Y1B2u2 (t) , (3.1)

x1 (0) =
[
In 0

]
X−1x0.

With cost functional Ji for the player i given by

tf∫
0

{
zT (t)Miz (t)

}
dt+ xT1 (tf )Qitfx1 (tf ) (3.2)

where zT (t) =
[
xT1 (t) uT1 (t) uT2 (t)

]
and

Mi =

⎡
⎢⎣

Qi Vi Wi

V T
i R1i Ni

W T
i NT

i R2i

⎤
⎥⎦ . (3.3)

The spellings of the matrices defined in (3.3) and another additional notation that will be used
throughout this paper are presented in the Appendix. Next, we recall from (Engwerda and
Salmah, 2009) the next result for nonzero-sum linear quadratic differential game for descriptor
systems (see also (Engwerda, 2005) for the ordinary differential game).

Theorem 3.1. A. Assume that Rii > 0 and
i. The Riccati differential equation

˙̃P (t) = −ÃT
2 P̃ (t)− P̃ (t) Ã+ P̃ (t)BG−1B̃T P̃ (t)− Q̃; P̃ T (tf ) =

[
QT

1tf
QT

2tf

]
(3.4)

has a solution P̃ on [0, tf ] and
ii. The two Riccati differential equations

K̇i (t) = −JTKi (t)−Ki (t) J + (Ki (t)Y1Bi + Vi)R
−1
ii

(
BT

i Y
T
1 Ki (t) + V T

i

)
−Qi;

Ki (T ) = Qitf

(3.5)

have a symmetric solution Ki(.) on [0, tf ].
Then the differential game (2.1) and (2.2) has a unique OLN equilibrium for every consistent
initial state. Moreover, the equilibrium actions are[

u∗1 (t)
u∗2 (t)

]
= −G−1

(
Z + B̃T P̃ (t)

)
Φ̃ (t, 0)

[
I 0

]
X−1x0 (3.6)
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where Φ (t, 0) is the solution of the transition equation

˙̃Φ (t, 0) =
(
J −BG−1

(
Z + B̃T P̃ (t)

))
Φ̃ (t, 0) ; Φ̃ (0, 0) = I.

The corresponding state trajectory is given by

x∗ (t) = X

[
x∗1 (t)
x∗2 (t)

]
where x∗1 (t) = Φ̃ (t, 0)

[
I 0

]
X−1x0,

x∗2 (t) = Y2

[
B1 B2

]
G−1

(
Z + B̃T P̃ (t)

)
x∗1 (t) .

B. For all tf ∈ [0, t1) there exist for all consistent x0 a unique OLN equilibrium for game (2.1)
and (2.2) if and only if the above Riccati differential equations i. and ii. have a solution for all
tf ∈ [0, t1).

Using Theorem 3.1, we have the next necessary and sufficient conditions for the existence
of an OLN equilibrium for open-loop zero-sum linear quadratic differential game on a finite
planning horizon.

Theorem 3.2. Consider the differential game described by (2.1), with for the player one, will
minimize the quadratic cost function :

J1 (u1, u2) =

tf∫
0

{
xT (t) Q̄x (t) + uT1 (t) R̄1u1 (t)− uT2 (t) R̄2u2 (t)

}
+ xT (tf )Qtfx (tf ) (3.7)

=
tf∫
0

{
zT (t) M̄z (t)

}
dt+ xT1 (tf )Qtfx1 (tf )

where

M̄ =

⎡
⎢⎣

Q V W

V T R1̄1 N

W T NT R2̄2

⎤
⎥⎦ .

And, for player two, will minimize the opposite objective function

J2 (u1, u2) = −J1 (u1, u2) ,

where the matrices Q̄, Q̄tf and R̄i, i = 1, 2 are symmetric. Moreover, assume that R̄i, Rīi, i =

1, 2 are positive definite. Then, for all tf ∈ [0, t1), this zero-sum linear quadratic differential
game has for every initial state an OLN equilibrium if and only if the following two conditions
hold on [0, t1).
1. The Riccati differential equation

Ṗ (t) = −J̃TP (t)− P (t) J̃ + P (t)BĜ−1BTP (t)− Q̂, P (tf ) = Qtf (3.8)

has a symmetric solution P (0, tf ) for all tf ∈ [0, t1).
2. The Riccati differential equations

K̇1 (t) = −JTK1 (t)−K1 (t) J + (K1 (t)Y1B1 + V1)R
−1
11

(
BT

1 Y
T
1 K1 (t) + V T

1

)
−Q;

K1 (T ) = Qtf

(3.9)
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K̇2 (t) = −JTK2 (t)−K2 (t) J + (K2 (t)Y1B2 + V2)R
−1
22

(
BT

2 Y
T
1 K2 (t) + V T

2

)
+Q;

K2 (T ) = −Qtf

(3.10)

have a solution Ki(.) on [0, tf ] , i = 1, 2. Moreover, if the above conditions are satisfied the
equilibrium is unique. In that case the equilibrium actions are[

u∗1 (t)
u∗2 (t)

]
= −ĪḠ−1

(
Z̄ + B̃T P̄ (t)

)
Φ̃ (t, 0)

[
I 0

]
X−1x0. (3.11)

Here Φ̃ (t, 0) satisfies the transition equation

˙̃Φ (t, 0) =
(
J −BḠ−1

(
Z̄ + B̃T P̄ (t)

))
Φ̃ (t, 0) ; Φ̃ (0, 0) = I.

Proof. First notice that G−1Z = Ĝ−1Z1 and Q̃2 = −Q̃1. Premultiplication of (3.4) with the
matrix

[
I I

]
gives then the next differential equation in P (t) := (P1 + P2) (t)

Ṗ (t) = JTP (t)− P (t)
(
J −BḠ−1Z1

)
+ P (t)BG−1

[
BT

1 Y
T
1 P1 (t)

BT
2 Y

T
1 P2 (t)

]
,

P (tf ) = 0.

Obviously P (t) = 0 satisfies this differential equation. Since the solution to this differential
equation is unique we conclude that P1 (t) = −P2 (t). Substitution of this into equation (3.4)
again, yields:

Ṗ1 (t) = −JTP1 −
(
Z1G

−1B̃T

[
I

I

])
P1 − P1Ã+ P1BĜ−1ĪBTP1 −

(
Q1 − Z1Ĝ

−1Z1

)
,

P1 (tf ) = Qtf .

After some elementary manipulations we get then the differential equation (3.8) with P (t) =:

P1 (t). The symmetry of P (0, tf ) follows from the symmetry of Qtf and the symmetry of the
differential equation (3.8) (Engwerda, 2005). The corresponding equilibrium strategies are then
directly obtained from Theorem 3.1.

4 THE INFINITE PLANNING HORIZON

As in (Engwerda and Salmah, 2009), in this section we assume that the cost functional player
i = 1, 2 , likes to be minimize is

lim
tf→∞ Ji (x0, u1, u2, tf ) , (4.1)

where

Ji (x0, u1, u2, tf ) =

tf∫
0

{
xT (t) Q̄ix (t) + uTi (t) R̄iui (t)

}
dt

subject to (2.1).
We start by recalling some important notions concerning algebraic Riccati equations that play
a main role in the rest of this paper ((Engwerda and Salmah, 2009), (Engwerda, 2005)).
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Definition 4.1. A solution P ∈ R
2n×n of the algebraic Riccati equation

0 = ÃT
2 P̃ + P̃ Ã− P̃BG−1B̃T P̃ + Q̃ (4.2)

is called
a. stabilizing, if σ

(
Ã−BG−1B̃T P̃

)
⊂ C

−, where σ (A) denote the spectrum of matrix A and
C
− = {λ ∈ C |Re (λ) < 0}.

b. left-right stabilizing (LRS) if

1. it is a stabilizing solution, and

2. σ
(
−ÃT

2 + P̃BG−1B̃T
)
⊂ C

+
0 where C

+
0 = {λ ∈ C |Re (λ) ≥ 0}.

The following theorem states the existence of an OLN equilibrium for the infinite planning hori-
zon open-loop nonzero-sum linear quadratic differential game (Engwerda and Salmah, 2009).

Theorem 4.1. Assume that Rii > 0 and
1. The algebraic Riccati equation (4.2) has a LRS solution, and
2. The two algebraic Riccati equations

0 = JTKi +KiJ − (KiY1Bi + Vi)R
−1
ii

(
BT

i Y
T
1 Ki + V T

i

)
+Qi, i = 1, 2 (4.3)

have a stabilizing solution Ki, i = 1, 2.
Then the linear quadratic differential game (2.1) and (4.1) has an OLN equilibrium for every
consistent initial state.
Moreover, one set of equilibrium actions is (for t > 0 ) given by :[

u∗1 (t)
u∗2 (t)

]
= −G−1

(
Z + B̃T P̃

)
Φ̃ (t, 0)

[
I 0

]
X−1x0 (4.4)

where Φ̃ (t, 0) is the solution of the transition equation

˙̃Φ (t, 0) =
(
J −BG−1

(
Z + B̃T P̃

))
Φ̃ (t, 0) ; Φ̃ (0, 0) = I.

The corresponding state trajectory is given by

x∗ (t) = X

[
x∗1 (t)
x∗2 (t)

]
where x∗1 (t) = Φ̃ (t, 0)

[
I 0

]
X−1x0,

x∗2 (t) = Y2

[
B1 B2

]
G−1

(
Z + B̃T P̃

)
x∗1 (t) .

Furthermore, the costs by using the actions (4.4) for the players are

([
I 0

]
X−1x0

)T
L̄i

[
I 0

]
X−1x0, i = 1, 2,

where, with Acl := J −BG−1B̃T P̃ , L̄i is the unique solution of the Lyapunov equation

[
I
(
−G−1

(
Z + B̃T P̃

))T ]
L̄i

[
I
(
−G−1

(
Z + B̃T P̃

))T ]T
+AT

clL̄i + L̄iAcl = 0.

(4.5)
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A direct corollary from Theorem 3.2 and Theorem 4.1 is our next Theorem 4.2 about the infinite
planning horizon open-loop zero-sum linear quadratic differential game.

Theorem 4.2. Consider the differential game described by (2.1) with, for player one, will mini-
mize the quadratic cost functional :

J1 (u1, u2) =
∞∫
0

{
xT (t) Q̄x (t) + uT1 (t) R̄1u1 (t) −uT2 (t) R̄2u2 (t)

}
dt (4.6)

=
∞∫
0

{
zT (t) M̄z (t)

}
dt

where

M̄ =

⎡
⎢⎣

Q V W

V T R1̄1 N

W T NT R2̄2

⎤
⎥⎦ .

And, for player two, will minimize the opposite objective function

J2 (u1, u2) = −J1 (u1, u2) ,

where the matrices Q̄ and R̄i, i = 1, 2 are symmetric. Moreover, assume that R̄i, Rīi, i = 1, 2

are positive definite. Then this infinite planning horizon open-loop zero-sum linear quadratic
differential game has
1. An OLN equilibrium for every initial state if and only if the following two conditions hold

1. the coupled algebraic Riccati equations

0 = J̃TP1 + P1J̃ − P1BĜ−1BTP1 + Q̂ (4.7)

0 = J̃TP2 + P2J̃ + P2BĜ−1BTP2 − Q̂ (4.8)

have a set of solution P̃ such that J −BḠ−1
(
Z̄ + B̃T P̃

)
is stable; and

2. the two algebraic Riccati equations

0 = JTK1 +K1J − (K1Y1B1 + V1)R
−1
11

(
BT

1 Y
T
1 K1 + V T

1

)
+Q (4.9)

0 = JTK2 +K2J − (K2Y1B2 + V2)R
−1
22

(
BT

2 Y
T
1 K2 + V T

2

)
−Q (4.10)

have a symmetric solution Ki such that J − Y1BiR
−1
ii

(
V T
i +BT

i Y
T
1 Ki

)
is stable, i = 1, 2.

Moreover, the corresponding equilibrium actions are[
u∗1 (t)
u∗2 (t)

]
= −Ḡ−1

(
Z̄ + B̃T P̃

)
x1 (t) (4.11)

where x1 (t) satisfies the differential equation

ẋ1 (t) =
(
J −BḠ−1

(
Z̄ + B̃T P̃

))
x1 (t) , x1 (0) =

[
In 0

]
X−1x0.
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2. A unique OLN equilibrium for every initial state if and only if the set of coupled algebraic
Riccati equations (4.7) and (4.8) has a LRS solution and the two algebraic Riccati equations
(4.9) and (4.10) have a symmetric stabilizing solution. The corresponding equilibrium actions
are as described in item 1.

In the case that matrix J is stable, then the condition under which the zero-sum game has an
OLN equilibrium can be further simplified. This is shown in the following theorem, while the
proof of this theorem is in line with the proof in (Engwerda, 2005).

Theorem 4.3. Consider the open-loop zero-sum differential game as described in Theorem
4.2. Assume, additionally, that matrix J is stable. Then, the game has for every initial state a
unique OLN equilibrium if and only if the next two conditions hold.
1. The algebraic Riccati equation

0 = −J̃TP − P J̃ + PBĜ−1BTP − Q̂, (4.12)

has a symmetric solution P such that J −BḠ−1
(
Z̄ + B̃T P̄

)
is stable.

2. The two algebraic Riccati equations (4.9) and (4.10) have a symmetric solution Ki such
that J − Y1BiR

−1
ii

(
V T
i +BT

i Y
T
1 Ki

)
is stable, i = 1, 2 . Moreover, the corresponding unique

equilibrium actions are [
u∗1 (t)
u∗2 (t)

]
= −ĪḠ−1

(
Z̄ + B̃T P̄

)
x1 (t) (4.13)

where x1 (t) satisfies the differential equation

ẋ1 (t) =
(
J −BḠ−1

(
Z̄ + B̃T P̄

))
x1 (t) , x1 (0) =

[
In 0

]
X−1x0.

The cost for player one is

J1 =
([

I 0
]
X−1x0

)T
P
[
I 0

]
X−1x0

and for player two is −J1.

Proof. According to Theorem 4.2 this game has a unique OLN equilibrium for every initial state
if and only if the two coupled algebraic Riccati equations (4.7) and (4.8) have a LRS solution
Pi, i = 1, 2 and the two algebraic Riccati equations (4.9) and (4.10) have a stabilizing solution.
Adding equation (4.7) to (4.8) yields the following differential equation in (P1 + P2)

0 = −J̃T (P1 + P2) + (P1 + P2)
(
J̃ −BĜ−1BTP1 −BĜ−1BTP2

)
.

This is a Lyapunov equation of the form ATX + XCT = 0 , with X = P1 + P2 and CT =

J̃ − BĜ−1BTP1 − BĜ−1BTP2. Now, independent of the specification of (P1, P2), C is always
stable. So, whatever Pi, i = 1, 2 are, this Lyapunov equation has a unique solution (P1 + P2).
Obviously P1 + P2 = 0 satisfies this Lyapunov equation. So, necessary we conclude that
P1 = −P2 . Substitution of this into equation (4.7) then shows that equations (4.7) and (4.8)
have a solution Pi if and only if equation (4.12) has a solution P . The corresponding equilibrium
strategies then follow directly from Theorem 4.2. The symmetric and uniqueness properties of
P follow immediately from the fact that P is stabilizing solution of an ordinary Riccati equation
(see (Engwerda, 2005)).
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In case it is additionally assumed in Theorem 4.3 that Q is positive semidefinite, equation (4.12)
has a stabilizing solution (see (Engwerda, 2005) for the ordinary differential game). Moreover
in that case, by considering the fact that equation (4.10) should have a stabilizing solution it
can be rephrased as that the following Riccati equation should have a solution K such that
J + Y1B2R

−1
22

(
V T
2 +BT

2 Y
T
1 K
)

is stable :

0 = JTK +KJ − (KY1B2 + V2)R
−1
22

(
BT

2 Y
T
1 K + V T

2

)
−Q. (4.14)

We present this consequence in the next theorem.

Theorem 4.4. Consider the open-loop zero-sum differential game as described in Theorem
4.2. Assume that matrix J is stable and Q ≥ 0. Then this game has, for every initial state, a
unique OLN equilibrium if and only if the algebraic Riccati equations

0 = −J̃TP − P J̃ + PBĜ−1BTP − Q̂ (4.15)

and

0 = JTK +KJ − (KY1B2 + V2)R
−1
22

(
BT

2 Y
T
1 K + V T

2

)
−Q (4.16)

have a solution P and K, respectively, such that J −BḠ−1
(
Z̄ + B̃T P̄

)
and

J + Y1B2R
−1
22

(
V T
2 +BT

2 Y
T
1 K
)

are stable. Moreover, the corresponding unique equilibrium
actions are [

u∗1 (t)
u∗2 (t)

]
= −ĪḠ−1

(
Z̄ + B̃T P̄

)
x1 (t) .

Here x1 (t) satisfies the differential equation

ẋ1 (t) =
(
J −BḠ−1

(
Z̄ + B̃T P̄

))
x1 (t), x1 (0) =

[
In 0

]
X−1x0.

The cost for player one is

J1 =
([

I 0
]
X−1x0

)T
P
[
I 0

]
X−1x0

and for player two is −J1.

5 INVARIANT SUBSPACE METHOD

In this section we study the relationship between certain invariant subspaces of matrix M̄ and
solutions of the algebraic Riccati equation (4.7) and (4.8). We start by stating two basic lemmas
(Engwerda, 2005).

Lemma 5.1. Let C ∈ R
3n be an n-dimensional invariant subspaces of M̄ , and let Ci ∈ R

n×n,

i = 0, 1, 2, be three real matrices such that C = Im
[
CT
0 CT

1 CT
2

]T
. If C0 is invertible

then Pi := CiC
−1
0 , i = 1, 2, solves (4.7) and (4.8) and J − BḠ−1

(
Z̄ + B̃T P̃

)
= σ

(
M̄ |C

)
.

Furthermore, (P1, P2) is independent of the specific choice of basis of C.

A subspace C that satisfies the above property is called a graph subspace.
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Lemma 5.2. Let Pi ∈ R
n×n, i = 1, 2, be a solution to the set of coupled Riccati equation

(4.7) and (4.8). Then there exist matrices Ci ∈ R
n×n, i = 0, 1, 2, with C0 is invertible, such

that Pi = CiC
−1
0 , i = 1, 2. Furthermore, the columns of

[
CT
0 CT

1 CT
2

]T
form a basis of

n-dimensional invariant subspaces of M̄ .

Now, we introduce a separate notation for the set of M̄ -invariant subspaces

M̄inv :=
{
T
∣∣M̄T ⊂ T

}
.

It follows from above Lemma 5.1 and Lemma 5.2 that the following set of graph subspaces
plays a crucial role

Ppos :=

⎧⎪⎨
⎪⎩P ∈ M̄inv

∣∣∣∣∣∣∣P ⊕ Im

⎡
⎢⎣

0 0

I 0

0 I

⎤
⎥⎦ = R

3n

⎫⎪⎬
⎪⎭ .

Every element of Ppos defines exactly one solution of the algebraic Riccati equation. The
following fact relates solutions of algebraic Riccati equation (4.7) and (4.8) with M̄ -invariant
subspaces in Ppos that follows immediately from Lemma 5.1 and Lemma 5.2.

Corollary 5.3. Equation (4.7) and (4.8) have a set of stabilizing solution (P1, P2) if and only if
there exists an M̄ -invariant subspace P in Ppos such that Reλ < 0 for all λ ∈ σ

(
M̄ |P

)
.

In general, the set of algebraic Riccati equations (4.7) and (4.8) does not have a unique sta-
bilizing solution. The following proposition shows, however, that it does have a unique LRS
solution.

Proposition 5.4. 1. The set of algebraic Riccati equations (4.7) and (4.8) has a LRS solution
(P1, P2) if and only if matrix M̄ has an n-dimensional stable graph subspace and M̄ has 2n

eigenvalues (counting algebraic multiplicities) in C
+
0 .

2. If the set of algebraic Riccati equations (4.7) and (4.8) has a LRS solution, then it is unique.

Now, we will use the theory of invariant subspace above to find OLN equilibria of the infinite
planning horizon open-loop zero-sum differential game. The proof of the next theorems and
corollaries are in line with the proof in (Engwerda, 2005). We start with the following theorem.

Theorem 5.5. If the open-loop zero-sum differential game (2.1) and (4.6) has an OLN equilib-
rium for every consistent initial state, then

1. M̄ has at least n stable eigenvalues (counted with algebraic multiplicities). More in par-
ticular, there exist a p-dimensional stable M̄ -invariant subspace S, with p ≥ n, such that

Im
[
I CT

1 CT
2

]T
⊂ S for some Ci ∈ R

n×n, i = 1, 2.

2. the two algebraic Riccati equations (4.9) and (4.10) have a stabilizing solution.

Conversely, if the two algebraic Riccati equation (4.9) and (4.10) have a stabilizing solution and
vT (t) =:

[
xT1 (t) ψT

1 (t) ψT
2 (t)

]
is an asymptotically stable solution of

v̇ (t) = M̄v (t), x1 (0) =
[
I 0

]
X−1x0
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then, with ψT =
[
ψT
1 (t) ψT

2 (t)
]
,

[
u∗1 (t)
u∗2 (t)

]
= −Ḡ−1

(
B̃Tψ (t) + Z̄x1 (t)

)
provides an OLN

equilibrium for the open-loop zero-sum linear quadratic differential game (2.1) and (4.6). The
corresponding state trajectory is given by

x∗ (t) = X

[
x∗1 (t)
x∗2 (t)

]
, where x∗2 (t) = Y2

[
B1 B2

]
Ḡ−1

(
B̃Tψ (t) + Z̄x∗1 (t)

)
.

Combining Lemma 5.1 and Theorem 4.2 the following fact (Engwerda and Salmah, 2009)
results.

Corollary 5.6. An immediate consequence of Lemma 5.1 and Theorem 4.2 is that if M̄ has a
stable invariant graph subspace and the two algebraic Riccati equation (4.9) and (4.10) have a
stabilizing solution, the game will have at least one OLN set of equilibrium actions.

If the equilibrium actions allow for a feedback synthesis then the closed-loop dynamic of the
game can be described by (Engwerda and Salmah, 2009)

ẋ1 (t) =
(
J −BḠ−1

(
Z̄ + B̃T P̃

))
x1 (t) , x1 (0) =

[
In 0

]
X−1x0. (5.1)

In this case the equilibrium actions are given by[
u∗1 (t)
u∗2 (t)

]
= −Ḡ−1

(
Z̄ + B̃T P̃

)
x1 (t) . (5.2)

For the case above, the following theorem holds.

Theorem 5.7. Assume the open-loop zero-sum linear quadratic differential game (2.1) and
(4.6) has an OLN equilibrium for every initial state and the equilibrium control actions allow for
a feedback synthesis. Then the following statements are true.

1. M̄ has at least n stable eigenvalues (counted with algebraic multiplicities). In particular,
for each such OLN equilibrium there exits a uniquely determined n-dimensional stable

M̄ -invariant subspace Im
[
I V T

1 V T
2

]T
for some Vi ∈ R

n×n.

2. The following algebraic Riccati equation (4.9) and (4.10) have a symmetric solution Ki

such that J − Y1BiR
−1
ii

(
V T
i +BT

i Y
T
1 Ki

)
is stable, i = 1, 2.

Then combining the results of both Theorem 5.5 and Theorem 5.7 yields the following.

Corollary 5.8. The open-loop zero-sum differential game (2.1) and (4.6) has, for every initial
state, an OLN equilibrium (u∗1, u∗2) if and only if

1. there exist P1 and P2 which are solutions of the set of coupled algebraic Riccati equation
(4.7) and (4.8) satisfying the additional constraint that the eigenvalues of Ācl := J −
BḠ−1

(
Z̄ + B̃T P̃

)
are all situated in the left-half complex plane, and

2. the two algebraic Riccati equation (4.9) and (4.10) have a symmetric solution Ki such
that J − Y1BiR

−1
ii

(
V T
i +BT

i Y
T
1 Ki

)
is stable, i = 1, 2.
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If (P1, P2) is a set of stabilizing solutions of the coupled algebraic Riccati equation (4.7) and
(4.8), the actions [

u∗1 (t)
u∗2 (t)

]
= −Ḡ−1

(
Z̄ + B̃T P̃

)
Φ (t, 0)x0 (5.3)

where Φ (t, 0) satisfies the transition equation Φ̇ (t, 0) = ĀclΦ (t, 0) ; Φ (0, 0) = I, yield an OLN
equilibrium.

The condition under which the game has an unique OLN equilibrium for every initial state is
given in the following theorem.

Theorem 5.9. Consider the open-loop zero-sum differential game (2.1) and (4.6). This game
has a unique OLN equilibrium for every consistent initial state if and only if

1. equation (4.7) and (4.8) have a LRS solution, and

2. the two algebraic Riccati equation (4.9) and (4.10) have a stabilizing solution.

Moreover, the unique equilibrium actions are given by (4.11).

6 AN EXAMPLE

Consider the game defined by the system

Eẋ (t) = Ax (t) +B1u1 (t) +B2u2 (t) , x (0) = x0

and cost function

J1 (u1, u2) =
∞∫
0

{
xT (t) Q̄x (t) + uT1 (t) R̄1u1 (t) − uT2 (t) R̄2u2 (t)

}
dt

where E =

[
0 0

1 −1

]
, A =

[
0 1

1 −2

]
, B1 =

[
1

0

]
, B2 =

[
1

1

]
, Q̄ =

[
5 1

0 1

]
, R̄1 = [1],

and R̄2 = [3].

With Y T =

[
1 1

1 0

]
and X =

[
1 1

0 1

]
the matrix pencil (E,A) can be rewritten into its

Weierstrass canonical form (2.5) where X1 = Y T
2 =

[
1

0

]
, X2 = Y T

1 =

[
1

1

]
, N = [0], and

J = [1]. Furthermore, after some calculations, matrix M̄ results as

M̄ =

⎡
⎢⎣

5 −6 −6

−6 8 7

−6 7 4

⎤
⎥⎦ .

The egenvalues of M̄ are −1.8972, 0.3698, and 18.5274. The corresponding eigenvectors are
⎡
⎢⎣

−0.4497

0.3177

−0.8347

⎤
⎥⎦ ,
⎡
⎢⎣

0.7194

0.6828

−0.1277

⎤
⎥⎦ , and

⎡
⎢⎣

−0.5294

0.6579

0.5357

⎤
⎥⎦ respectively.
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Figure 1: equilibrium actions (u∗1, u∗2)

From this we observe that M̄ has one stable eigenvalue and Ppos has one element that is the
eigenspace

Im

⎡
⎢⎣

−0.4497

0.3177

−0.8347

⎤
⎥⎦

corresponding to the eigenvalue −1.8972. According to Lemma 5.1 and Lemma 5.2 , then

P1 = 0.3177 · −0.4497−1 = −0.7065

P2 = −0.8347 · −0.4497−1 = 1.8561

provide a stabilizing solution of the set of coupled algebraic Riccati equations. Using (4.11),
we obtain the equilibrium actions for the players are[

u∗1 (t)
u∗2 (t)

]
=

[
2.4212

−1.8090

]
e(−0.1968)t.

Because M̄ has one stable eigenvalue, then according to Proposition 5.4 and Theorem 5.9 the
game has unique OLN equilibrium. Figure 1 illustrates the equilibrium actions of the game.

7 CONCLUDING REMARKS

This paper studies the linear quadratic zero-sum differential game for descriptor systems which
have index one. Necessary and sufficient conditions for the existence of an OLN equilibrium
have been derived. The paper shows how the solution of the game depends on a Riccati
differential equation for the finite horizon case and an algebraic Riccati equation for the infinite
horizon. A numerical example illustrating some of the theoretical results is presented.
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The problem addressed in this paper is restricted to index one descriptor systems. To find an
OLN equilibrium in a zero-sum game that has higher order index is still an open problem to be
analyzed.

APPENDIX

We use the next shorthand notation in this paper :
Qi := XT

1 Q̄iXI , Ni := BT
1 Y

T
2 XT

2 Q̄iX2Y2B2, Vi := −XT
1 Q̄iX2Y2B1, Wi := −XT

1 Q̄iX2Y2B2,
Q := XT

1 Q̄XI , N := BT
1 Y

T
2 XT

2 Q̄X2Y2B2, V := −XT
1 Q̄X2Y2B1, W := −XT

1 Q̄X2Y2B2,
R11 := BT

1 Y
T
2 XT

2 Q̄1X2Y2B1 + R̄1, R12 := BT
1 Y

T
2 XT

2 Q̄2X2Y2B1,

R21 := BT
2 Y

T
2 XT

2 Q̄1X2Y2B2, R22 := BT
2 Y

T
2 XT

2 Q̄2X2Y2B2 + R̄2,

R1̄1 := BT
1 Y

T
2 XT

2 Q̄X2Y2B1 + R̄1, R2̄2 := BT
2 Y

T
2 XT

2 Q̄X2Y2B2 − R̄2,

A2 = diag {J, J}, B = Y1

[
B1 B2

]
, B̃T = diag

{
BT

1 Y
T
1 , BT

2 Y
T
1

}
, Ã = J −BG−1Z,

Zi =
[
Vi Wi

]
, Q̃i = Qi − ZiG

−1Z, Z̃ =
[
V W

]
, Q̂ = Q+ Z̃Ḡ−1Z̄, J̃ = J −BḠ−1Z̄.

P̃ =

[
P1

P2

]
, ÃT

2 = AT
2 −

[
Z1

Z2

]
G−1B̃T , Q̃ =

[
Q̃1

Q̃2

]
, Z =

[
V T
1

W T
2

]
, G =

[
R11 N1

NT
2 R22

]
,

Z̄ =

[
V T

−W T

]
, Ḡ =

[
R1̄1 N

−NT −R2̄2

]
, Ĝ =

[
R1̄1 N

NT R2̄2

]
, P̄ =

[
P

P

]
, B̄T =

[
BT

1 Y
T
1

−BT
2 Y

T
1

]
,

Ī =

[
I 0

0 −I

]
.
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