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Abstract 

A finite acyclic graph always contains a sink, a vertex that does not 
emit edges. Any sink at the graph will generate minimal basic ideal of 
the Leavitt path algebra over a commutative unital ring. Moreover, the 
Leavitt path algebra on the finite acyclic graph is a direct sum of 
minimal basic ideals generated by the sinks. In other words, Leavitt 
path algebra over the commutative unital ring on the finite acyclic 
graph is basically semisimple, but not necessarily semisimple. The 
Leavitt path algebra is semisimple if and only if the commutative 
unital ring is semisimple. 

1. Introduction 

Algebraically, a (directed) graph ( )rsEEE ,,, 10=  is a pair of 4-tuple 

consisting of a set of vertices, a set of edges, and two mappings 

,:, 01 EErs →  in which for every edge ( ) ( ) 01 ,, EeresEe ∈∈  are, 

respectively, the source and the end of e [4]. A path of length n in the graph 
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E is a sequence of n edges. Let nn eee 21=μ  be such that ( ) ( )1+= ii eser  

for .1...,,2,1 −= ni  A path is called a cycle if the end and the source of 

path are the same, but neither edge has the same source. A graph is acyclic if 
it has no cycle. 

Leavitt has defined an extended graph of E as ( ( ) ,,ˆ 110 ∗= EEEE ∪  

),, rs ′′  where ( )∗1E  is a set of edges with direction opposite to the edges in 

,1E  i.e., ( ) { }.: 11 EeeE ∈= ∗∗  The edges in 1E  are named real edges and  

the edges in ( )∗1E  are called ghost edges. Leavitt path algebras over a field 

are extended path algebras over the field of the extended graph Ê  satisfying 
Cuntz-Krieger conditions CK1 and CK2 [1, 3]. 

Tomforde [7] has generalized Leavitt path algebra over a commutative 
unital ring R, denoted by ( ),ELR  as a free R-algebra that satisfies: (1) 

( ) ( ) ,, 1Eeeeerees ∈∀==  (2) ( ) ( ) ,, 1Eeeereeer ∈∀== ∗∗∗  (3) :1CK  

( ) ,,, 1
, Efeerfe fe ∈∀δ=∗  and (4) { ( ) }∑ =∈

∗ ∈∀= vesEe vEveevCK ,
0

1 ,,:2  

is not a sink. Multiplication of nonzero monomials ∗αβ  and ∗γδ  in ( )ELR  

is as follows: 

( ) ( )

⎪
⎪
⎩

⎪
⎪
⎨

⎧

β′γ=βδβ′α
β=γαδ
γ′β=γδγ′α

=γδαβ ∗∗

∗

∗

∗∗

otherwise.,0
,if,

,if,
,if,

 (1) 

In addition, an ideal I in ( )ELR  is a basic ideal if it satisfies: for every 

nonzero ,Rc ∈  0Eu ∈  if ,Icu ∈  then Iu ∈  [7]. Leavitt path algebra 

( )ELR  is basically simple if the only basic ideals of ( )ELR  are {0} and 

itself. 

An algebra is semisimple if it is a direct sum of minimal ideals, i.e., an 
ideal that does not contain any nonzero ideal except itself [9]. Analogously, a 
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minimal basic ideal in ( )ELR  is defined as a basic ideal that does not contain 

any nonzero basic ideal except itself. In addition, ( )ELR  is basically 

semisimple if it is a direct sum of the minimal basic ideals [8]. 

Based on [1, Lemma 3.4 and Proposition 3.5], if E is a finite acyclic 

graph and { }mvv ...,,1  is a set of sinks, then {∑ α∈|αβ= ∗ ,;KkkI iv  

( ) ( ) ( ) }ivrrEpath =β=α∈β ;  is an ideal in ( ),ELK  for every mi ≤≤1  and 

( ) ,1 iv
m
iK IEL =⊕=  in which ( )( )KMI ii vnv ≅  and ( )ivn  is the number of 

real paths in ( )Epath  ending in vertex .iv  Because ( )( )KM ivn  is a simple 

ring, ( )ELK  is a direct sum of minimal ideals .ivI  In other words, ( )ELK  is 

a semisimple algebra if the graph E is finite and acyclic. 

If the field K is generalized by commutative unital ring R, then we    

could show analogously that { ( ) ( ) }∑ =β=α∈βα∈|αβ= ∗∗
iv vrrERccI i ;,;  

( )( )RM ivn≅  is an ideal in ( ),ELR  for every sink mivi ≤≤1,  and 

( ) .1 iv
m
iR IEL =⊕=  If we could prove that ivI  is a minimal basic ideal, then 

Leavitt path algebra ( ),ELR  where E is the finite acyclic graph, is basically 

semisimple. The minimal basic ideal can be created by minimal saturated 

hereditary subset of .0E  That is one of the focuses in this paper. We also 
show the necessary and sufficient conditions for ( )ELR  as semisimple.  

2. On Minimal Saturated Hereditary Subset 

Characterization of the Leavitt path algebra ( )ELR  can be determined by 

its ideals, particularly, the basic ideals. A saturated hereditary subset of 0E  is 
important in constructing the ideals of the Leavitt path algebra, especially the 
set of sinks. 

Definition 2.1 [7]. A subset 0EH ⊆  is hereditary if ( )1Ee ∈∀  

( ) ( )( ).HerHes ∈⇒∈  It is saturated if ( ( ) ),, 10 ∅≠∈∀ − vsEv  
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( ( ( )) ).1 HvHvsr ∈⇒⊂−  Saturation of hereditary subset X, denoted by 

X  is the smallest saturated hereditary subset of 0E  containing X. 

Intersection of saturated hereditary subsets of 0E  is also saturated 
hereditary. However, the union of saturated hereditary subsets need not               
be necessarily saturated. Note the figure of graph G consisting of 

{ }xwvuG ,,,0 =  and { }.,,1 gfeG =  

 

Figure 1 

The graph G is finite and acyclic with sink u and x. Both subsets { }u  and 

{ }x  are hereditary with saturation { } { }uu =  and { } { }., xwx =  In other words, 

both { }u  and { }xw,  are saturated hereditary. However, { } { }=xwu ,∪  

{ }xwu ,,  is hereditary but not saturated. 

Lemma 2.2 [7]. Given a graph ( )srEEE ,,, 10=  and a commutative 

unital ring R. If I is an ideal of ( ),ELR  then { }IvEvH ∈∈= :0  is a 
saturated hereditary subset. 

The lemma above states that 0EI ∩  is saturated hereditary for every 

ideal ( ).ELI R⊆  A saturated hereditary subset of 0E  constructs a graded 
ideal, as the proposition below asserts. 

Proposition 2.3 [7]. Given graph ( )srEEE ,,, 10=  and a 

commutative unital ring R. If 0EH ⊂  is saturated hereditary and 

{ ( ) ( ) ( ) }∑ ∈β=α∈βα∈αβ= ∗ HrrEpathRccIH ,,,:  is a graded ideal 

generated by H, then HI  is a basic ideal and { } .:0 HIvEv H =∈∈  

Proposition 2.3 states that .0 HIE H =∩  The hereditary (not necessarily 

saturated) subset 0EX ⊂  can generate graded (two-sided) ideal that equal 
to those generated by the saturation, .X  
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Lemma 2.4 [7]. If 0EX ⊂  is hereditary and XI  is graded (two-sided) 

ideal generated by X, then ,XX II =  where X  is a saturation of X (the 

smallest saturated hereditary subset containing X). 

A non-empty saturated hereditary subset 0EH ⊂  is a minimal 
saturated hereditary subset if it does not contain any non-empty saturated 
hereditary subsets except itself. The minimal saturated hereditary subset 
constructs a minimal basic ideal. 

Proposition 2.5. Given graph ( )srEEE ,,, 10=  and a commutative 

unital ring R. The non-empty saturated hereditary subset 0EH ⊂  is 
minimal if and only if the basic ideal generated by H, HI  is minimal in 

( ).ELR  

Proof. Based on Proposition 2.3, HI  is a basic ideal. Suppose that the 

basic ideal HI  is not minimal. Then there is basic ideal { }.0, ≠⊂ JIJ H  By 

Lemma 2.2, { } JEJvEvH ∩00 : =∈∈=′  is saturated hereditary. Because 

,HIJ ⊂  .00 HIEJEH H =⊂=′ ∩∩  This is a contradiction to the fact 

that H is minimal saturated hereditary. Therefore, HI  is a minimal basic 

ideal. Conversely, let HI  be a minimal basic ideal. Suppose that the non-

empty saturated hereditary subset HIEH ∩0=  is not minimal. Then there                

is a non-empty saturated hereditary subset HH ⊂′  such that 

{ ( )∑ ∈βα∈αβ= ∗
′ ,,,: EpathRccIH  and ( ) ( ) } HIHHrr ⊂⊂′∈β=α  is a 

nonzero basic ideal because of Proposition 2.3. It means that a basic ideal 

HI  is not minimal. It is a contradiction. Therefore, H is minimal. ~ 

3. On Basically Semisimple and Semisimple Leavitt Path Algebra 

The graph discussed in this section is a finite graph, that is, the graph is 

row-finite and 0E  is finite. Graph E is a row-finite graph if ( )vs 1−  is a finite 

set for every .0Ev ∈  We determine ideals of Leavitt path algebra which are 
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isomorphic to the direct sums of these ideals. However, some definitions and 
properties associated with the formation of the ideals of the Leavitt path 
algebra is presented beforehand. 

Definition 3.1 [1]. For a given graph ( ),,,, 10 rsEEE =  ( )Epath  is 

the set of all paths in E. Range index of 0Ev ∈  denoted by 
( ) ( ) ( ){ },:# vrEpathvn =α∈α=  is defined as the cardinality (the number 

of elements) of the set of real edges ending at v. 

Singleton of a sink is a hereditary (not necessarily saturated) subset of 

.0E  Based on Lemma 2.4, a sink 0Ev ∈  can construct the ideal .vI  If the 

graph E is finite and acyclic, then vI  is isomorphic to the set of matrices 

with finite size ( ).vn  The following lemma is a minor generalization of a 

well-known result in [5, Corollary 2.2], in terms of that vI  is not only an 

ideal but also a minimal basic ideal. 

Lemma 3.2. Given a finite acyclic graph E, a sink 0Ev ∈  and a 

commutative unital R. Then { ( ) ( ) }∑ ∈β==α∈βα|αβ= ∗∗ RcrvrEcIv ,,,  

is a minimal basic ideal in ( )ELR  and ( )( ).RMI vnv ≅  

Proof. First, we show that { ( )∑ ==α∈βα|αβ= ∗∗ vrEcIv ,,  

( ) }Rcr ∈β ,  is an ideal of ( )ELR  and ( )( ).RMI vnv ≅  This is analogous                    

to [1, Lemma 3.4] by replacing the field K with the ring R. Let vI∈αβ∗      

and let ( ),11 ELeeee Rjmjini ∈=γδ ∗∗∗  be a nonzero monomial. Then 

( ) ( ).β==α rvr  If ,0=αβγδ ∗∗  then .vI∈αβγδ ∗∗  Therefore, if ,0≠αβγδ ∗∗  

then by equation (1), there are ( )Epathqp ∈,  such that qα=δ  or 

( ).1CKpδ=α  Because 0, ≠δα=δ q  and ( ) vr =α  is a sink, ( ) vqs =                

is not possible (impossible ( ) .)1deg ≥q  Thus, ∗∗∗∗∗ αβαγ=αβγδ g  

,0=βγ= ∗∗vg  since ( ) ( )1CKvr =α=αα∗  and ( ) ,vqs ≠  implies .0=∗vg  
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Hence, we use .pδ=α  We know that ( ) ,vr =α  then ( ) ( ) ,vprpr ==δ  so 

that 

pp δ=αβδγδ=αβγδ ∗∗∗∗  

( ) ( )δ=δδβδγ= ∗∗ rpr  

( ) ( ) ( )psrpps =δβγ= ∗  

( ) ( ) ( ) ( ).prprvrIp v γ===β∈βγ= ∗  

Hence, vI  is left ideal of ( ).ELR  We can prove analogously that vI           

is the right ideal of ( ).ELR  Furthermore, we show that ( )( ).RMI vnv ≅  

Because E is finite and acyclic, ( ) ∞<= kvn  and we have 

( ) ( ){ }kivprEpathp ii ...,,2,1,: ==∈  such that the basic ideal vI  is in 

the form of { }∑ ∈=|= ∗ .;...,,2,1, RckjipcpI jiv  Choose .tj ≠  Suppose 

that ( )( ) .0≠∗∗
utji pppp  By equation (1) we have qpp jt =  or ,ppp tj =  

for some ( )., Epathqp ∈  The first possibility is .qpp jt =  Because of 

( ) ( ) ( )qrqprvpr jt ===  and tj ≠ , ( ) .0deg >q  On the other hand, 

( ) vpr j = , and hence ( ) ( ) ,vprqs j ==  a contradiction to a sink v. The 

second possibility is ppp tj =  or .∗∗∗ = tj ppp  Then we have ( )( ) =∗∗
utji pppp  

0≠= ∗∗∗∗∗
uiutti vpppppppp  and .0≠∗vp  It means that ( ) ( ) vprps =′= ∗  

is a contradiction to sink v. Hence, if ,tj ≠  then ( ) ( ) .0=∗∗
utji pppp  In 

other words, it should be tj =  and we find ( )( ) .∗∗∗∗ == uiuiujji ppvpppppp  

Therefore, the ideal 

{ }∑ ∈=|= ∗ RckjipcpI jiv ;...,,2,1,  

{ ( ) } ( )∑ =∈=|≅ ,;...,,2,1, RMRckjiec kij  
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with ( )ijji epp →∗  which is the matrix unit. We obtain ( )RMI kv ≅  

( )( ).RM vn=  Second, we would show that vI  is a minimal basic ideal. 

Because a sink ,0Ev ∈  { }v  is a hereditary subset of .0E  Based on Lemma 

2.4, there is a saturation { } ,0EvH ⊂=  that is, a minimal saturated 

hereditary containing v such that .vH II =  Since HI  is an ideal generated 

by saturated hereditary H, by Proposition 2.3, vH II =  is a basic ideal. In 

addition, since H is minimal saturated hereditary, based on Proposition 2.5, 

vH II =  is minimal basic ideal. ~ 

According to [7], if all ideals of Leavitt path algebra ( )ELK  over a field 

are basic, then all minimal ideals of ( )ELK  are also minimal basic ideals. 

However, not all minimal ideals of the Leavitt path algebra ( )ELR  are 

minimal basic ideals and conversely, not all minimal basic ideals of ( )ELR  

are minimal ideals. 

Example 3.3. Consider the graph in Figure 1 above and given                  
the commutative unital .4Z=R  Based on Lemma 3.2, because 

( ) { } ;3,,# == fggxxn  ( ) { } ,2,# == euun  we have minimal basic ideals in 

( )
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
≅

444

444

444
:4

ZZZ
ZZZ
ZZZ

Z xIGL  and .
44

44 ⎟
⎠
⎞

⎜
⎝
⎛≅

ZZ
ZZ

uI  However, both xI  

and uI  are not minimal ideals. It is because there are nonzero ideals 

,2 xx IJ ⊊  ,2 uu IJ ⊊  where 

{ ( ) ( ) ( ) }∑ ∈′β==α∈βα|αβ′= ∗
42 2,,, ZcrxrGpathcJ x  

,
222
222
222

444

444

444

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
≅

ZZZ
ZZZ
ZZZ
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and  

{ ( ) ( ) ( ) }∑ ∈′β==α∈βα|αβ′= ∗
42 2,,, ZkrurGpathkJ u  

.
22
22

44

44 ⎟
⎠
⎞

⎜
⎝
⎛≅

ZZ
ZZ

 

Because xx JxJx 22 ,2 ∉∈  and ,,2 22 uu JuJu ∉∈  both ux JJ 22 ,  are not 

basic ideals but minimal ideals. 

Ideal vI  generated by a sink 0Ev ∈  is not necessarily a minimal ideal 

but certainly a minimal basic ideal in ( ).ELR  Furthermore, we are inspired 

by [5, Corollary 2.3] to investigate that ( )ELR  on the finite acyclic graph is a 

direct sum of minimal basic ideals generated by the sinks. 

Theorem 3.4. If given the finite acyclic graph E and the set 

{ },...,,2,1,sink:0 tivEv ii =∈  then ( ) ( )( ).11 RMIEL ii vn
t
iv

t
iR == ⊕≅⊕=  

Proof. Based on Lemma 3.2, { ( ) ( )}∑ β==α∈βα|αβ= ∗∗ rvrEkI ivi ,,  

is a graded basic ideal in ( )ELR  and ( )( ),RMI ii vnv ≅  for every ....,,2,1 ti =  

Furthermore, we prove that ( ) ∑ == t
i vR iIEL 1 .  Take arbitrary ( );ELR∈αβ∗  

,0≠αβ∗  ( )., Epath∈βα  If ( ) ( )β==α rvr i  for some sinks ,iv  then 

.ivI∈αβ∗  If ( ) ivr ≠α  for every sink ,iv  then ( )αr  is not a sink. It means 

that there is an edge 1Ee ∈  such that ( ) ( ) .vesr ==α  Because ( )ELR∈αβ∗  

and by CK2 condition, we have 

( ) ( )

( ) ( )( ) ( )( ) ( )

.
, , ,

∑ ∑ ∑
α== α== α==

′∈ ′∈ ′∈

∗∗∗∗∗∗∗ βα=βα=βα=βα=αβ

rves rves rves
Ee Ee Ee

eeeeeev  

If ( ) ( )ervaer i β==  for some sinks ,iv  then .ivI∈αβ∗  However, if 

( ) ivaer ≠  for every sink ,iv  then the process is repeated to obtain a sink iv  
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such that ivI∈αβ∗  caused by: ( ) ( )( )∑ ∈γ
∗∗ βγαγ=αβ EPath  with ( ) ivr =αγ  

( )βγ= r  for some sinks .iv  Thus, ( ) ∑ == t
i vR iIEL 1 .  Finally, take any 

ivI∈αβ∗  and jvI∈γδ∗  with .ji ≠  Since iv  and jv  are sinks, there is no 

path γ=γ′β  or β=β′γ  such that ( ) ( ) .0≠γδαβ ∗∗  In other words, 

( ) ( ) 0=γδαβ ∗∗  for every ....,,2,1,, tjiji =≠  It should be 0=ji vv II  

for every ....,,2,1,, tjiji =≠  Therefore, if ivI∈αβ∗  and jvI∈γδ∗  with 

,ji ≠  then .∗∗ γδ≠β  However, ivI∈0  for every ,...,,2,1 ti =  because 

.0 R∈  Then { },0=ji vv II ∩  for every .ji vv ≠  We find ( ) iv
t
iR IEL 1=⊕=  

and by Lemma 3.2, ( )( )RMI ii vnv ≅  for every sink .iv  Then 

( ) ( )( ).1 RMEL ivn
t
iR =⊕≅  ~ 

Based on [8, Definition 3.4], the Leavitt path algebra is basically 
semisimple if it is a direct sum of minimal basic ideals. Theorem 3.4 above 
has the following corollary. 

Corollary 3.5. Any Leavitt path algebra over a commutative unital                 
ring on a finite acyclic graph is basically semisimple, in which ( ) =ELR  

( )( ).sinksink RMI vnvvv ⊕≅⊕  

Example 3.6. Consider again Example 3.3, then the Leavitt path algebra 
over 4Z  on the graph G,  

( )
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⊕⎟

⎠
⎞

⎜
⎝
⎛≅⊕=

444

444

444

44

44
4

ZZZ
ZZZ
ZZZ

ZZ
ZZ

Z xu IIGL  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛≅

444

444

444

44

44 ,
ZZZ
ZZZ
ZZZ

ZZ
ZZ
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is basically semisimple. However, ( )GL 4Z  is not semisimple. If ring 4Z  is 

replaced by semisimple ring ,6Z  then we find 

( )
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛≅⊕=

666

666

666

66

66 ,6
ZZZ
ZZZ
ZZZ

ZZ
ZZ

Z xu IIGL  

a basically semisimple Leavitt path algebra that is semisimple, because  

( ) ,32326

idealsbasicnotthat
idealsminimalidealsbasicminimal

ofsumdirecta
xxuu

ofsumdirecta
xu IIIIIIGL ⊕⊕⊕=⊕=Z  

with 

uuu III 32 ⊕=  and ,32 xxx III ⊕=  

in which 

,
33
33

,
22
22

66

66
3

66

66
2 ⎟

⎠

⎞
⎜
⎝

⎛≅⎟
⎠

⎞
⎜
⎝

⎛≅
ZZ
ZZ

ZZ
ZZ

uu II  

,
222
222
222

666

666

666

2
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
≅

ZZZ
ZZZ
ZZZ

xI  and .
333
333
333

666

666

666

3
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
≅

ZZZ
ZZZ
ZZZ

xI  

The Leavitt path algebra on a finite acyclic graph is always basically 
semisimple but not necessarily semisimple. Based on [6, Corollary 18.6], 

( )RMn  is semisimple if and only if R is semisimple.  

Theorem 3.7. The Leavitt path algebra ( )ELR  on a finite acyclic graph 

is semisimple if and only if the commutative unital ring R is also semisimple. 

Proof. Let ( )ELR  be a semisimple R-algebra. Then, it could be viewed as 

a semisimple R-module. Based on Lemma 3.2 and Corollary 3.5, every sink 

( )( )RMI vnv ≅  is R-submodule of ( ) ≅⊕= vvR IEL sink ( )( ).sink RM vnv⊕  

In [2, Corollary 1.24] is stated that sums and submodules of semisimple 
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modules are semisimple. Thus, ( )( )RMI vnv ≅  is semisimple. By [6, 

Corollary 18.6], R is semisimple. The converse follows from [6, Corollary 
18.6] and [2, Corollary 1.24].  

4. Conclusion  

Singleton of a sink is a hereditary subset but not necessarily saturated. 
Every sink in a finite acyclic graph E will generate minimal basic ideal vI  of 

Leavitt path algebras ( )ELR  over commutative unital ring R on the graph,            

in which ( )( )RMI vnv ≅  and ( )vn  is range index of v. In addition, ( ) =ELR  

( )( )RMI vnvvv sinksink ⊕≅⊕  are direct sums of minimal basic ideals 

generated by the sinks, and hence is a basically semisimple algebra. 

The minimal basic ideal vI  is not necessarily minimal in ( ).ELR  This 

means that the basically semisimple ( )ELR  is not necessarily semisimple. 

Every ( )ELR  on a finite acyclic graph is semisimple if and only if the 

commutative unital R is semisimple. 
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