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Abstract. One of the deficiencies of Z tools is that there is limited
support for model checking Z specifications. Building a model checker
directly for a Z specification will take considerable amount of effort and
time due to the abstraction of the language. Translating a Z specifi-
cation input into a specification in a language that an existing model
checker tool accepts is an alternative method. Researchers at the Uni-
versity of Sheffield implemented a translation tool, Z2SAL, that takes
a Z specification and translates it into the input for Symbolic Analysis
Laboratory (SAL), a framework for combining different tools for abstrac-
tion, program analysis, theorem proving and model checking. This paper
discusses support for model checking Z specifications, in which the ca-
pability of Z2SAL is extended. This support includes a translation of a
generic constant and a schema calculus definition. Instead of translating
these aspects of the Z language into the SAL language as Z2SAL does,
a Z specification containing these two notations will be pre-processed,
in which a generic constant definition is redefined to an equivalent ax-
iomatic definition and a schema calculus definition is expanded to a new
schema definition. As a result of a successful redefinition or expansion, a
redefined or expanded Z specification is generated, otherwise the original
Z specification is returned. Results show that the large number of our ex-
amples can be run successfully by our system. The redefined or expanded
Z specification can be translated later by Z2SAL and the generated SAL
file can be model checked or simulated by the SAL tool. Results also
show that Z2SAL can translate outputs of our system to some extent.
The majority of generated SAL files can be run by the SAL tool.
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1 Introduction

As a formal language, the use of Z in academia and industry has increased
considerably. This is because Z has been used successfully to address a large
variety of problems and the international standard was also designed for this



language. The use of Z can make a specification more formal and free from
ambiguity. In addition, Z allows a specification to be analysed mechanically [1].
Designing a specification of a system enables a user to verify the system at an
early stage of development. Early verification could avoid high cost of system
implementation and test phases, if the specification was designed correctly [2–4].
Therefore, a specification is crucial for a system, especially if the system relates
to the safety of property and/or life.

However, there is a lack of tools for this language, especially in model checking
Z specifications. Although the Community Z Tools (CZT) project is developing a
set of open source tools for Z, progress of this development is slow [5]. There are
many causes of the shortage of Z tools. These are mostly related to the Z language
and semantics, such as an inherent expressiveness and a difficulty in deciding
effectively any theorem about Z specifications [5, 1]. Another cause is the richness
of this language, which can also be the issue of verifying Z [1]. Furthermore,
only a few of these tools can be used in validating intended meanings of such Z
specifications [6].

The lack of supporting tools for the Z language and the above issues has
led researchers suggest alternative methods, which is a more rapid approach, to
address this problem: reuse and adapt existing tools. Researchers at the Univer-
sity of Sheffield implemented the Z2SAL translator [5] which generates a SAL
specification from a Z specification input. The generated SAL file can be model
checked later by the SAL model checker. A brief introduction to Z2SAL and
SAL is given in Section 2.

In our study, several experiments using Z2SAL and SAL are performed. Our
finding is Z2SAL supports many Z tags, but not all. Furthermore, sometimes
several generated SAL files cannot be verified or simulated by the SAL tool.

Therefore, this paper intends to address problems as stated below:

1. What are crucial features of Z should be implemented to enhance the ability
of Z2SAL and why?

2. How to implement such features that are supported by Z2SAL and SAL?

These questions will be explored in the following sub-sections. Both the below
sub-sections did not exist in [12].

1.1 Motivation

Based on our experiences using Z2SAL, two aspects of the Z notation were chosen
to study. Both aspects will be discussed in this section.

The first aspect is the Z generic construct. Z2SAL cannot translate specifi-
cations that consist of generic constructs. As a result, error files were generated
instead. Our finding is that Z2SAL cannot recognize a generic constant which
is one type of the Z generic constructs. Although it has been declared in the
generic constant definition, Z2SAL reported that the generic constant is a new
identifier.



Z2SAL has not encountered any generic construct on Z specifications before-
hand, so this part of Z has not been implemented yet. Therefore, our assump-
tion is that the current version of Z2SAL does not support translation of either
a generic constant or a generic schema. Although, Z2SAL’s researchers might
implement them.

Our study in the SAL literature concludes that a generic form cannot be
found in the SAL language. Thus, another assumption is that Z2SAL does not
support generic constructs in order to be consistent with the SAL language.

Specified using generic parameters, a generic constant is commonly used in
formulating mathematical tool-kit operators [7], in which the operators do not
depend on the particular type of elements in their construction [8]. Another usage
of a generic constant is to specify a general notion which is used frequently in a
system.

In case there is no generic constant, several equivalent functions should be
formulated because each function is dedicated to one set of types of parameters;
it is redundant work. Thus, a generic constant is beneficial to a Z specification.

The second aspect is the Z schema calculus. Z2SAL supports a translation of
several schema calculus such as a schema inclusion, the ∆ operator, and the Ξ
operator. However, they must be specified either vertically or horizontally in a
schema. If a new schema is specified as being constructed from earlier schemas,
Z2SAL does not support this schema construction. Thus, it is argued that Z2SAL
does not support schema calculus.

The constructed schema is used commonly to define a more complex, modular
and larger specification of a system. Therefore, schemas are reused to create
new schemas. These schemas are combined by using schema operators. Different
schema operators which are used define different new schemas.

Therefore, focus was set on generic constants and schema calculus as crucial
features of the Z notation in our work. They were studied to extend Z2SAL so
it can translate both of them. These findings were used to define our objective
as discussed below.

1.2 Objective and Contribution

Our objective is to implement a tool. This tool will redefine a generic constant
definition to an equivalent axiomatic definition based on usages of this generic
constant.

Another objective is to implement a tool to create a new schema by expanding
other schemas. These schemas are connected by schema operators.

Both these tools are implemented in a system which is called support for
model checking Z specifications. This System is our contribution to broaden the
applicability of model checking Z specifications. JFlex [9], BYACC/J [10], and
Java language [11] were used to implement our system. During our experiments
with this system, there is another contribution of a SAL translation of user
defined functions and constants. It will be discussed later.

The paper is organized as follows. Section 2 describes briefly an introduc-
tion to Z2SAL and SAL. Section 3 contains our support for model checking Z



specifications. This section also discusses how to implement this support which
is supported by both Z2SAL and SAL. It is divided into two sub-sections. Each
sub-section has been extended from its previous version in [12]. Section 3.1 out-
lines our support for generic constants. There are several new sub-sections in this
section, such as Generic Abbreviation Definitions, Lambda Expressions, Sum-
maries of Experiments on the Redefinition System, Size of Z Specifications, and
Manual Modification in SAL files. However, majority of the contents of the first
three ones and the last one have been discussed in [12]. The new sub-section,
Size of Z Specifications, discusses how our redefinition system scales to a va-
riety of sizes of Z specifications. Section 3.2 explains another support which is
schema calculus. There is a new sub-section in this section, Summaries of Ex-
periments with the Expansion System. Several contents of this sub-section were
gathered from earlier sub-section. There are several new experiments have been
performed in the expansion system as compared to the previous version in [12].
These experiments were summarised in new tables accompanied the new sub-
section. Section 4 concludes this paper and summarises future work. This last
section has also been extended from its previous version in [12].

2 A Brief Introduction to Z2SAL and SAL

Several tools in Z have been developed based on the quick approach, such as
ProZ [6] which is a translator of Z into the existing Alloy Analyser tool, ProB
[13]; data refinement verification [14] which uses Alloy SAT-solver based on a
counter-example finder; and Z2SAL [5] which is a translator of a Z language
specification into a SAL language specification [15].

Smith and Wildman at the University of Queensland, Australia, described
how to translate a Z language specification into a SAL input language specifi-
cation [16]. This basic idea was implemented in a tool set [17] and the current
Z2SAL extends it in a different direction, to tackle optimization issues [5].

In providing a translator of Z into an input language of existing tools, SAL
was chosen since it has an equivalent representation of many aspects of Z [17].
Moreover, ’many different tools exist, which use the SAL input language such
as simulator, model checker either symbolic or bounded, deadlock checker, etc’
[5], which are offered freely by Stanford Research Institute (SRI) International
under academic licences.

A generated SAL file consists of a SAL module and/ or several SAL contexts.
This module describes a transition system of Z states [17]. The simple SAL
module has a general format as follows:

State : MODULE =
BEGIN

INPUT . . .
LOCAL . . .
OUTPUT . . .
INITIALIZATION [ . . . ]
TRANSITION [

. . .
]

END;



The SAL context is a place to declare types, constants, modules and modules
properties [15]. Z2SAL formulates several Z mathematical tool-kits, which are
necessary for a generated SAL specification, in separate but integrated SAL
context files.

Translating a Z language specification into a SAL input language specification
requires several adjustments due to a number of differences of both languages
[5]. These adjustments are discussed briefly as given below:

First, is bounding the infinite. Z supports fully abstract (non-grounded, non-
constructive) specification styles, whereas SAL is a concrete and grounded lan-
guage. For example, Z supports the built-in numerical types ”Z”, ”N” and ”N1”,
whose ranges are infinite. On the other hand, SAL has similar unbounded types
INTEGER, NATURAL and NZNATURAL, which can be used only as base types of fi-
nite sub-ranges in a SAL specification. Z also supports given types, which have
semantics of an un-interpreted set, such as [TAPE, NAME]. Therefore, the trans-
lations provided by Z2SAL should specify a finite number for sizes of these sets.

The mismatched formal paradigms are the second difference. Z and SAL
have very different styles of specifications and descriptions. The Z specification,
which consists of state schemas and operational schemas, is built-up increasingly.
It views locally and functionally such that every operational schema operates on
its input and output variables, or on variables of state schemas. On the other
hand, the SAL specification is created as a ’monolithic finite state automaton’
(FSA) such that all inputs, outputs and local variables are compiled into ag-
gregate states [5]. Moreover, all operations act upon guard transitions from one
state configuration to another state configuration [5]. Thus, this mismatch can
be approached by re-ordering all information in the Z specification. A further
mismatch is that Z specifications often use partial functions [5]. On the other
hand, as SAL is based on Binary Decision Diagrams (BDDs), SAL always re-
quires a representation of function as a total function. Thus, a work-around is
necessary in order to present a partial function in Z specifications as a total
function in SAL. Furthermore, a set cannot be treated as a monolithic FSA of
SAL, but as a ’poly-lithic collection of judgements’ over its elements instead [5].
Thus, several operations in sets are necessary to be expressed differently, such
as the cardinality of a set, which is not supported by SAL.

The last difference is an issue of non-computable specifications [5]. A Z speci-
fication naturally supports non-constructive styles of a specification. These styles
should be expressed in computable styles of a specification in SAL. Both styles
essentially are different indeed. Normally, a SAL specification consists of a set
of update assignments to primed variables, which indicates posterior variable
states. On the other hand, a direction of a constructive approach is not nec-
essary in a Z specification. Z2SAL asserts posterior existences of variables and
restricts their values on preconditions. This requires a search for suitable pre-
condition values.

More information relating to Z2SAL is provided in [18]. It also includes a
downloadable version of this translation tool.



SAL is a framework of several different tools such as abstraction, program
analysis, theorem proving and model checking, which is used to change concepts
and implementations of model checkers and theorem provers. These concepts and
implementations at first were based on verification, but they were extended to
include calculation of properties or symbolic analysis such as abstraction, slicing
and composition [15, 19].

The SAL language can be used as a specification language, a target lan-
guage for several translators, or a common source of several analysis tools. It is
originated of a collaboration of two researchers, David Dill from Stanford Uni-
versity and Thomas Henzinger from the University of California at Berkeley.
These collaborations devolved SAL further and incorporated Verimag. SAL is
now developed at SRI and its current version is 3.3. The SAL language syntax
can be found in [15].

The next section describes our support for model checking Z specifications.

3 Support for Model Checking Z Specifications

As mentioned earlier in Section 1.2, there are two main types of our support for
model checking Z specifications. The first is a generic constant, which will be
described in the following sub-section.

3.1 Support for Generic Constants

Our first support is to aid Z2SAL to translate generic constants. The follow-
ing sub-sections describe briefly an introduction to a generic constant and our
system, also discuss results of several examples.

Introduction A generic constant is used to introduce a new constant which
uses generic parameters [7]. By using a generic parameter, different types of a
parameter can be specified. They are specified by using different literals such as
X, Y, Z and others. A generic constant has a global scope in a Z specification,
whereas a generic parameter has a local scope in the particular generic constant
definition.

An example of a generic constant definition is formulated as follows:

[X ]
monoSequence : P(seqX )

monoSequence = {s : seqX | #(ran s) ≤ 1}

The above definition has monoSequence as the generic constant, which is a
constant (see a discussion below). The output type is a set of a sequence of
X. There is one specified generic parameter, X. This generic constant definition
defines a set of a sequence of s, which just has at the most one element.



A Generic Constants Redefinition System Our approach to support Z2SAL
in translating generic constant definitions is to implement a tool. This tool will
redefine a generic constant definition to an equivalent axiomatic definition based
on usages of this generic constant (see Section 1.2). This approach is based on
similar behaviour between a generic constant and an axiomatic definition. In
other words, they both declare a global variable inside a Z specification. This re-
definition is called an actualization process, in which a generic typed parameter
will be actualised to its actual typed parameter.

Plagge and Leuschel in [13] also proposed the same method as our method
for translating a generic definition defined in a Z specification. As discussed in
their paper, generic constant definitions had not been added to Z specification
examples.

Our system specifies different types of generic constants. These types can be
identified based on the generic constant declarations, as given below:

– a function; the outermost operator is an infix generic function. A complete
set of these functions is ” 7→”, ”→”, ” 7�”, ”�”, ” 7→→”, ”→→” and ”�→”. These
functions are collected in one token, INGEN. As a function, it will have at least
one input parameter and one output parameter. This type can be generic.

– a relation; a declaration uses the ”↔” tag in its outermost operator. This tag
has the REL string as its token. As a relation, there is no output parameter
type. In other words, the output is the relation itself; a pair of types.

– a constant; a constant means it does not require any input. Thus, a declara-
tion of this generic constant only gives us generic output parameters. This
declaration denotes none of the above tags in its outermost declaration.

The above three types of generic constants are parts of a variable declaration
of the Z grammar in the Z language. This grammar, which refers to [8], was
specified in our parser as follows:

expr1 : expr1 . word REL decor expr1 . word
| expr1 . word INGEN decor expr1 . word
| expr2 . chain
| expr2
;

The first production rule indicates a relation, whereas the second one is a func-
tion. The third production rule contains CROSS obtained from expr2.chain.
Thus, this production rule can either be a function or a relation depending on
which of those first two production rules is fired previously. The last one is a
constant; both function and relation production rules are not matched.

Inevitably, a constant actualization is not always straightforward, especially
a constant implicit type. In this case, a solution is to infer the actual type of the
generic constant.

Our redefinition system is intended as a pre-processing tool which can aid
Z2SAL. A Z specification input, which consists of generic constant definitions
and usages, will be pre-processed by this tool in order to redefine its generic
constant definitions.



This tool was implemented in Java. It has a simple GUI to interact with users
and has also two preliminary processes: the scanner and the parser generation.
These two generators were implemented by using the JFlex scanner generator
[9] and the BYACC/J parser generator [10] respectively.

The current version of our system implemented several Z tokens which refer
to [8, 20] and several production rules of the Z grammar which refer to [8]. Our
system also experienced of simple variable types of generic constants.

The next sub-section discusses an example of the redefinition process. This
Z specification was taken from [21], the swap function.

An Example of the Redefinition Process This specification has one given
type, NAME. There are two generic constant definitions for the swap process de-
fined in this specification. These functions, each of which has two parameters,
swap the orders of its parameters. Thus, after a swap, an element in the second
position will be shifted such that this element is in the first position and vice
versa.

The first definition, as shown below, has two different generic parameters: X
and Y. These different parameters mean that both of them have different types.
The generic constant is swap2 which is shown in the following example:

[X ,Y ]
swap2 : X × Y → Y × X

∀ x : X ; y : Y • swap2(x , y) = (y, x)

The second definition has one generic parameter, X. This single parameter
means that the swap process will occur on objects of the same type. The generic
constant is swap1 which is shown in the following example:

[X ]
swap1 : X × X → X × X

∀ x , y : X • swap1(x , y) = (y, x)

A state schema, State, has only one state variable, name, which is an instance
of the specified given type. There is no predicate specified in this schema.

The initialization schema, Init, refers to the post state of the state schema.
This schema does not declare its own variable and predicate. It means that this
schema only contains predicates which are inherited from its reference to the
state schema. In this case, the reference is the post state of the state schema.

There is one operational schema specified in this specification, Swap, which
calls these generic constants. This schema does not change a state of the system
indicated by a reference to Ξ State. This schema is specified as follows:

Swap
a? : NAME ; a!, b! : NAME ; c? : N; c! : N; ΞState

(b!, a!) = swap1[NAME ,NAME ](name, a?)
(c!, a!) = swap2(name, c?)



As can be seen in the above schema, each generic constant has one usage. The
first usage uses explicit parameter types in addition to parameters required by
the function. Our system generates two axiomatic definitions for these usages as
shown below:

swap1 : NAME × NAME → NAME × NAME

∀ x , y : NAME • swap1(x , y) = (y, x)

swap2 : NAME × N→ N× NAME

∀ x : NAME ; y : N • swap2(x , y) = (y, x)

Consider that the explicit type has been deleted from the first usage since
Z2SAL does not support this type of parameter. Thus, the first usage should be
modified by our system as follows:

(b!, a!) = swap1(name, a?)

This modification was conducted on this usage to let Z2SAL translates this
specification successfully.

Result and Discussion The generated specification of the above example can
be translated by Z2SAL. A SAL file, generated by Z2SAL, can also be verified
by the SAL model checker. However, it failed to be simulated by the SAL model
checker. This simulator generated an unsupported error of a failure to convert
function application.

Furthermore, if a theorem was added to the generated SAL file, this SAL file
cannot be verified either by the SAL model checker. Thus, it is an issue of the
redefinition system.

The current Z2SAL translates the Z functions, relations and constants, and
puts them in the base module. Z2SAL defines State as the default name for
this module. The simple structure of this module can be seen in Section 2. This
translator also puts variable declarations in a definition clause. The definition
clause is part of the base module or in other words it is inside the base module.

As a result, an error was sometimes experienced during our experiments with
user-defined functions. This error related to an incompatible type in the equality
operator or a failure to convert function application produced by the SAL model
checker or simulator, as given earlier.

A user defined function, relation and constant are always declared outside
a SAL module [15]. They are put in a context clause, specifically in a constant
declaration, instead. The module language in SAL describes transition system
modules [15]. However, it cannot be used to declare new types or constants or
asserting properties of the module [15]. All of these can be easily declared by
specifying them in the SAL context language.

A translation method of user defined functions adapted by the SAL language
is different to the one that Z2SAL adapts. Based on this finding, the same
method as SAL’s method was proposed by us to Z2SAL researchers during our



study. This proposal can be considered as our contribution in model checking Z
specification as mentioned in Section 1.2.

This method can be applied to a user defined function and constant, but it is
not applicable to a user defined relation since a relation does not have a type for
its output parameter. It is based on a signature of this SAL function specified
in [15].

The signature of which is named as a constant declaration has the following
syntax rule[15]:

ConstantDeclaration := Identifier [(VarDecls)] : Type[= Expression]

This constant declaration, as mentioned above, is part of the SAL context
language. The SAL context language syntax is given as follows [15]:

Context ::= Identifier [{Parameters}] : CONTEXT = ContextBody
Parameters ::= [TypeDecls]; {VarDecls}∗,
TypeDecls ::= {Identifier}+, : TYPE
ContextBody ::= BEGINDeclarationsEND
Declarations ::= ConstantDeclaration

| TypeDeclaration

| AssertionDeclaration

| ContextDeclaration

| ModuleDeclaration
ConstantDeclaration ::= Identifier [(VarDecls)] : Type[= Expression]
TypeDeclaration ::= Identifier : TYPE [= TypeDef ]
AssertionDeclaration ::= Identifier : AssertionForm = AssertionExpression

AssertionForm ::= OBLIGATION | CLAIM | LEMMA | THEOREM
ContextDeclaration ::= Identifier : CONTEXT = Identifier{ActualParameters}
ActualParameters ::= {Type}∗, ; {Expression}∗,

Other non-terminals or rules can be found in the same reference as given above.
Thus, the generated SAL file was modified to adapt a constant declaration

formulated by SAL. Both the above function definitions were formulated manu-
ally on the generated SAL file. They are shown below:

swap1 ( q 1 : NAME, q 2 : NAME) : B NAME X B NAME = ( q 2 , q 1 ) ;

swap2 ( q 3 : NAME, q 4 : NAT) : B NAT X B NAME = ( q 4 , q 3 ) ;

Original declarations generated by Z2SAL for these functions were deleted.
A few theorems were added to this specification as shown below:

th1 : theorem State |− G(FORALL ( i : NAME, j : NAT) : swap2 ( i , j ) = ( j , i ) ) ;

th2 : theorem State |− G(FORALL ( i , j : NAME) : i = j =>
swap1 ( i , j ) = swap1 ( j , i ) ) ;

th3 : theorem State |− G(FORALL ( i , j : NAME) : swap1 ( i , j ) = swap1 ( j , i ) ) ;

The first two theorems are valid; the swap system can satisfy both properties.
The last theorem is invalid since the swap function will not give us the same
result for different parameters.

There is another issue relating to an abbreviation definition and a lambda
expression which was found during our experiments with the redefinition system.
Both these issues will be discussed in the next sub-sections.



Generic Abbreviation Definitions Z2SAL supports an abbreviation defini-
tion, but not the generic one. Declaring a global constant by using an abbrevia-
tion definition is common in writing Z specifications. Thus, a generic abbrevia-
tion definition was taken also into our consideration.

In the case of generic abbreviations, it is not enough just to work with an
actualization of a generic type. The other issue here is a set comprehension
definition. A generic abbreviation definition is usually defined by using a set
comprehension definition. However, Z2SAL does not support an abbreviation
definition consisting of a set comprehension.

For example, consider a generic abbreviation definition as below [7]:

monoSequence[X ] == {s : seqX | #(ran s) ≤ 1}

A generic abbreviation definition can be rewritten to a generic constant defini-
tion. Both these definitions declare global constants in the related Z specification,
in this case the type of the generic constant is a constant.

The expression in the right hand side of the ”==” uses a set comprehension
definition, which denotes that monoSequence is a set of a sequence of X. The
body of this generic definition is obtained from the expression after the ”==”
tag.

Thus, a generic abbreviation definition is first rewritten to a generic constant
definition. This rewriting is performed manually and automatically in order to
prove that it is correct. This equivalent definition was given in Section 3.1. Af-
terwards, this generic constant definition is redefined to an axiomatic definition.

Lambda Expressions Another kind of generic forms is the ”λ” expression,
which is used to define a function without specifying a name [7]. Z2SAL does
not support this expression which is common in generic constant definitions or
in other definitions in a Z specification generally. Our approach is to rewrite
a lambda expression automatically and manually to an equivalent expression
without any lambda expression. Then, it is redefined to an axiomatic definition.

For example, a generic constant definition as formulated below consists of
the lambda expression [7]:

[X ]
commonSubseq : ((seqX )× (seqX ))→ P(seqX )

commonSubseq = (λ s, t : seqX • allSubseqs ∩ allSubseqt)

The lambda expression in the above definition can be rewritten to an equivalent
definition as follows:

commonSubseq = {s, t : seqX • ((s, t), allSubseq(s) ∩ allSubseq(t))}

or another equivalent one as given below:

∀ s, t : seqX • commonSubseq(s, t) = allSubseqs ∩ allSubseqt

A lambda expression definition, (λ S • E), represents a function and has argu-
ments which are taken from S. An output of this expression is the value of E [8].



As given by the first equivalent definition above, the lambda expression is equiv-
alent to a set comprehension, {S • (T ,E )}, in which T is a characteristic tuple of
S. In a set comprehension, a characteristic tuple is obtained from its declaration.
Thus, (s,t) is the characteristic tuple of the above set comprehension.

During our experiments, Z2SAL was unable to translate a set comprehen-
sion definition with many parameters of the same type. According to the SAL
grammar rules, only one parameter can be declared in one definition of a set
comprehension. The SAL syntax [15] for a set expression is given as follows:

SetExpression := SetListExpression | SetPredExpression

SetListExpression := {{Expression}+, }
SetPredExpression := {Identifier : Type = Expression}

Thus, our approach is to rewrite the first equivalent lambda expression to the
second equivalent one.

Several results collected from our experiments are summarized and discussed
in the next sub-section.

Summaries of Experiments on the Redefinition System A number of
experiments on several Z specifications are presented on Table 1. These experi-
ments run on a laptop with a 1.30GHz Genuine Intel(R) CPU U7300 and 2.00
GB RAM.

The second column of Table 1 indicates that a manual modification was made
to the SAL file. The SAL file was generated by Z2SAL from the Z specification
produced by our redefinition system. This modification is required so that the
SAL file can be verified by the SAL model checker or simulated by the SAL
simulator. It involved rewriting a user defined function and placing this function
in which SAL put its function. Examples of this rewriting were given earlier in
Section 3.1. The modification also involved rewriting other parts of a SAL file.
Such a modification implies that there is a bug in the translation of associated
Z specification by Z2SAL. It can also be a mismatch between the Z language
and the SAL language. This manual modification will be discussed in the later
sub-section.

The third column shows verification times of each SAL file. A SAL file which
has one verification time means that this file has only be verified for one case of
the number of theorems. A SAL file which has two verification times means that
the SAL file at first can be verified by the SAL model checker. However, later
it cannot be verified if at least one theorem was added to this SAL file. Such a
SAL file usually cannot be simulated either by the SAL simulator even there is
no theorem.

Based on our experiments as shown in Table 1, majority of SAL files gener-
ated by Z2SAL from the output of our system, can be verified by the SAL model
checker. It is proved by existences of a verification time in each row of the table.

Inevitably, there is one output produced by our system which cannot be
translated by Z2SAL. The output is generated from the fFileStorage.tex input
file. It is because this Z specification contains a function which its range is also



Table 1. Several Experiments with the Redefinition System

Z Specification Details Verification time in secs

(*.tex) #Theorem = 0 #Theorem > 0

bbook Modified SAL function 0.842

bbook map Modified SAL function 0.016 0.25

bbook uni Modified SAL function and 0.031 0.406
other parts of SAL file

bbook map uni Modified SAL function and 0.359
other parts of SAL file

fDomRan Modified SAL function 0.015

fEmpty OK 0.093

fEmptyImpl OK 0.109

fFirst Modified SAL function 0.015 0.187

fHead Modified SAL function 0.031

fHeadFunc Modified SAL function and 0.031
cannot be simulated: The
set of initial states is empty

fMaxComSubSeq Modified other parts of SAL 0.047
file and cannot be simula
ted: An out of memory error

fMaxComSubSeq 1 Modified other parts of SAL 0.032
file and cannot be simula
ted: An out of memory error

fMaxComSubSeq orig Modified other parts of SAL 0.032
file and cannot be simula
ted: An out of memory error

fMonoSeq OK. Long simulation 0.047

fMonoSeq 1 OK. Long simulation 0.031

fSwap Modified SAL function 0.016 0.141

fUniqSeq Ok. Cannot be simulated: 0.062
An out of memory error

fUniq1Seq Ok. Cannot be simulated: 0.031
An out of memory error

fUniq2Seq Ok. Cannot be simulated: 0.015
An out of memory error

tn Modified other parts of SAL 0.03
file and cannot be simula
ted: An out of memory error

tnImpl Modified other parts of SAL 0.0
file and cannot be simula
ted: An out of memory error

fFileStorage Canot be translated by N/A
Z2SAL

fSet Modified SAL function 0.0
and other parts of SAL file



a function. Z2SAL does not support such a type. A quick solution is to rewrite
such a function. However, another error relating to the ”. .” tag was experienced.
It was concluded that it is a bug in a Z2SAL translation of a range of numbers.

Another finding is that a few SAL files, which can be verified by the SAL
model checker, cannot be simulated by the SAL simulator due to an out of
memory error as can be seen in Table 1. These SAL files usually have sequences
or a set inside other sets. Currently, this error has not been solved.

Relating to out of memory errors, the following sub-section discusses this
issue. The discussion will be accompanied by a table.

Size of Z Specifications Z specifications used for our experiments have dif-
ferent sizes measured in kilobytes. These sizes are summarized in Table 2. Sizes
of the redefined specifications are recorded also on this table.

”input” on this table means a Z specification input file for our system. On
the other hand, ”output” means a Z specification output file generated by our
system after performing a redefinition process, ”N/A”s in SAL specifications

means an associated Z specification cannot be translated by Z2SAL.

Referring to this table, almost all of our experiments have the same sizes
of Z specifications before and after redefinition processes. It means that there
were not many usages specified in these specifications. It can also mean that the
generic constant definitions are not quite complex definitions.

The size of a SAL specification is roughly twice to four times of its Z specifica-
tion. Sizes of SAL specifications shown in this table are original sizes producing
by Z2SAL. As discussed above, several of these SAL specifications have been
modified as required in order to be executed by the SAL tool successfully. Thus,
their sizes can be different from the original ones.

There are only four experiments which their sizes of Z specification outputs
were increased twice of their inputs. These specifications are bbook map uni,
fUniqSeq, fUniq1Seq and fUniq2Seq.

As shown in Table 1, several of our Z specifications cannot be simulated by
the SAL simulator because of out of memory errors. However, these errors cannot
be blamed for the increasing sizes of specifications. It is because there are other
specifications which their sizes were not increased, but they were involved on the
same errors as above. Sizes of these specifications are greater than 1. However,
it can coincide which is not influenced entirely only by sizes of specifications.

An additional factor is the complexity of a declaration of a generic constant.
The out of memory errors were involved on specifications which have either
sequences, or sets of sets.

Thus, a Z specification, which does not have a sequence, a set of other set,
or a range of numbers, can be executed successfully by the SAL tool. It argues
also that a size of a generic constant definition and a number of usages relate to
a generation of that error.

In a conclusion, our approach to redefine generic constants definitions scales
to larger specifications. However, as the outcomes of our system will be translated



Table 2. Sizes of Z Specifications

Z Specifications Sizes in KB

(.tex) input output SAL specifications

bbook 2 2 6

bbook map 1 1 4

bbook uni 1 1 4

bbook map uni 1 2 5

fDomRan 2 2 6

fEmpty 1 1 2

fEmptyImpl 1 1 2

fFirst 1 1 3

fHead 1 1 3

fHeadFunc 1 1 3

fMaxComSubSeq 2 2 4

fMaxComSubSeq 1 2 2 4

fMaxComSubSeq orig 2 2 4

fMonoSeq 1 1 3

fMonoSeq 1 1 1 3

fSwap 1 1 2

fUniqSeq 1 2 5

fUniq1Seq 1 2 5

fUniq2Seq 1 2 5

tn 3 3 6

tnImpl 3 3 6

fFileStorage 2 2 N/A

fSet 2 2 5

by Z2SAL and executed by the SAL tool later, the large specification generated
by our system is possible to be a problem with both tools.

As mentioned earlier, a separate discussion in manual modification in SAL
files will be offered. The following sub-section discusses our approach to this
manual modification.

Manual Modification in SAL Files Although all generated SAL files in our
experiments with this system can be verified by the SAL model checker, a few of
them at first failed. The modified version of these SAL files also failed to be ver-
ified by the SAL model checker. These files are output bbook uni as the SAL
file generated from the output of bbook uni.tex, output bbook map uni as
the SAL file generated from the output of bbook map uni.tex and output fSet
as the SAL file generated from the output of fSet.tex.

This failure related to incompatible types in the equality operator. The SAL
model checker identified that the type of birthday is not compatible with the
type of the first argument of a function uniSet in the first and second SAL
files. The uniSet function which is a generic constant definition was specified as
follows:



[X ]
uniSet : (PX )× (PX )→ (PX )

∀S ,T : (PX ) • uniSet(S ,T) = {x : X | x ∈ S ∨ x ∈ T}

This function combines two sets of elements which have the same types. As
can be seen, this function requires two parameter inputs. Both of them have the
same types as the output type.

An example of usage of the above generic constant is specified as follows:

birthday′ = uniSet(birthday, {name? 7→ date?})

As can be seen from the above generic constant definition, the type for the
first parameter is a set of X. This type is an expected type. On the other hand,
birthday is the first parameter passed to uniSet. The type of birthday will be
the actual type for this parameter. The declaration of the function birthday is
as follows:

birthday : NAME 7→ DATE

birthday is a state variable, which is a partial function from NAME to DATE.
Our system generated the uniSet axiomatic definition as follows:

uniSet : (P(NAME ×DATE))× (P(NAME ×DATE))→ (P(NAME ×DATE))

∀S ,T : (P(NAME ×DATE)) • uniSet(S ,T) = {x : (NAME ×DATE) | x ∈ S ∨ x ∈ T}

As can been from the above definition, the type of birthday has been modified
to its equivalent type. It is done so to ease the unification of the expected type,
X, and the actual type, NAME 7→ DATE.

A function type can be rewritten to a relation type [8]. Several constraints
should also be added to maintain that it was a function. Furthermore, a relation
is equivalent to a set of a pair of types.

X ↔ Y ≡ P(X × Y )

Thus, SAL failed to recognize that birthday had an equivalent type to the first
argument of the uniSet user-defined function. This error indicated that there
was incompatible type between the output of uniSet, Set C B NAME X B DATE I,
and the right hand side of the equality operator, [NAME X DATE -> bool]. Af-
terwards, a sequence of modifications was performed to the associated SAL file
lines.

The last error produced by the SAL model checker is as follows:
Error: [Context: output bbook uni mod, line(62), column(29)]:

Type mismatch in the function application.

Expected type:

[set{output bbook uni mod!NAME X DATE}!Set,

set{output bbook uni mod!NAME X DATE}!Set]

Actual type:

[output bbook uni mod!Set C NAME X B DATE I,

set{output bbook uni mod!NAME X DATE}!Set]

The related SAL lines are as follows:



61 NOT se t {NAME;} ! c onta in s ?(known , name?) AND
62 birthday ’ = uniSet ( ( birthday , s e t {NAME X DATE;} !
63 s i n g l e t on ( ( name? , date ? ) ) ) ) AND
64 i nva r i an t ’

In line 62, the type of uniSet after modification is a pair of set {NAME X DATE;}
! Set and set {NAME X DATE;} ! Set. This type was not compatible with the
actual type passed to uniSet, which was a pair of Set C NAME X B DATE I

and set {NAME X DATE;} ! Set. The type Set C NAME X B DATE I is
an alias for [NAME -> B DATE], specified by Z2SAL.

Although a function is special type of a relation and a relation is a set of a
pair of types in the Z language, SAL did not conclude that both types of the
first argument of uniSet are the same. Thus, this incompatible type was solved
manually. This is because our tool has not been able to perform this modification
automatically.

Our last modification defined the same alias for birthday, but this time the
alias represents a relation, not a function any more. It is shown as follows:

Set C NAME X B DATE I : TYPE = se t {NAME X DATE;} ! Set ; .

This change affects the usage of birthday. It cannot any longer be used as a
function.

f unc t i on {NAME, B DATE; DATE BB} ! p a r t i a l ?( b irthday ) AND

As a result, the above line was deleted from the old SAL file.

known = r e l a t i o n {NAME, DATE;} ! domain ( birthday ) AND

Another result is the above line, which is a relation, replaced a line, which is a
function, as follows:

known = func t i on {NAME, B DATE; DATE BB} ! domain ( birthday ) AND

As well as a line as follows, which presents a usage of a function:

date ’ = birthday (name?) AND

was replaced by a line below, which presents a usage of a relation:

s e t {NAME X DATE;} ! c onta in s ? ( birthday , (name? , date ’ ) ) AND

Finally, the modified SAL file can be verified by the SAL model checker and
simulated by the SAL simulator.

The same function was also a source of the error in the third SAL file, but this
time its first actual parameter is used. A usage of this function in the associated
Z specification is as follows:

used′ = uniSet(used,n)

The used state variable is a set of ”N1” and the n variable is an instance of
”N1”.

An axiomatic definition generated for the above usage is as follows:



uniSet : (PN1)× (PN1)→ (PN1)

∀S ,T : PN1 • uniSet(S ,T) = {x : N1 | x ∈ S ∨ x ∈ T}

After a similar modification as performed in both SAL files above, the modified
SAL file can be verified and simulated by the SAL tool.

Another aspect of the Z notation in our study is the schema calculus. This
aspect was taken as the second type of our support for model checking Z speci-
fications.

3.2 Support for Schema Calculus

This sub-section discusses the addition of support for Z schema calculus to our
tool. The sub-section begins with an introduction to schema calculus. It is fol-
lowed by a brief introduction to our support for this Z notation and our experi-
ments on this system.

Introduction Z2SAL supports a translation of several schema calculus such as
a schema inclusion, the ∆ and the Ξ operator, but they must be specified either
vertically or horizontally in a schema. However, if a new schema is constructed
from earlier schemas, Z2SAL does not support this schema construction. Thus,
it argues that Z2SAL does not support schema calculus definitions.

The constructed schema is specified by using ”=̂”. It is the same as the
supported schema calculus. However, the constructed schema does not use ”[”
and ”]” to surround its declaration of variables and predicates.

The constructed schema is used commonly to define a more complex, modular
and larger specification of a system. Schemas that have been specified can be
reused to specify a new schema. It is because every schema has its distinctive
operation in a specification, called ’schema separation’ [2].

A Schema Calculus Expansion System Our approach is to construct a new
schema by expanding other schemas, in which they are connected by schema
operators. This system was included in the support tool for model checking Z
specifications, the same as the redefinition system.

Since every schema operator has its own definition, a schema operator affects
how the expansion is performed. The expansion means that all unique variables of
involved schemas are listed in the new schema. It also means that predicates from
the involved schemas are added. These predicates are combined using specified
schema operators.

There is a prerequisite for operating two schemas; the same or common vari-
ables should have the same type. Furthermore, in a case of the negation operator,
normalisation is also required.

Normalisation is to define explicitly the constraint given by the declaration
part of the related schema. This constraint is specified in the predicate part. Nor-
malisation should be performed just before the negation. This process is applied



also to other schema operators for the sake of easiness. Several normalisation
rules were specified in our system as follows:

– Every ”N” or ”N1” in a declaration part is rewritten to a type of ”Z”.
– Every ”seq” or ”seq1” is changed to P(Z× newVal), newVal is a type which

comes after ”seq” or ”seq1”. The previous rule is applied also to newVal.
– Every function is changed to a pair of its left hand side type and its right

hand side one. Both the above rules are also applied to the type in the left
and in the right.

In general, after each schema is expanded, variables and predicates will be
collapsed to a reference of a state schema. This collapse benefits the new schema
to get a more compact schema and to avoid re-declarations of state variables.

Our system can expand several schema operators such as conjunction ”∧”,
disjunction ”∨”, negation ”¬”, implication ”⇒”, bi-implication ”⇔”, hiding
”\”, renaming ”/”, composition ”o

9”, universal quantifier ”∀” and existential
quantifier ”∃”. Our system can also perform a simple simplification over a pred-
icate part.

The next sub-section describes an example from our experiments with this
system.

An Experiment with the Schema Calculus Expansion System An ex-
ample, expandingschema 3.tex, will be presented in this sub-section. This
example was taken from [2], but has been modified in some places for our ex-
periments.

This example represents a library system specification. It has a state and an
initialization schema as follows:

Library
stock : COPY 7→ BOOK ; issued : COPY ↔ READER
shelved : FCOPY ; readers : FREADER

∀ x : COPY ; y1, y2 : READER •
(x 7→ y1) ∈ issued ∧ (x 7→ y2) ∈ issued ⇒ y1 = y2
shelved ∪ dom issued = dom stock
shelved ∩ dom issued = ∅
ran issued ⊆ readers
∀ r : readers • #(issued B {r}) ≤ maxloans

InitLibrary
Library′

shelved′ = ∅
readers′ = ∅

As can be seen from the above state schema, this library system has four
state variables:

– stock is a partial function from COPY to BOOK. It gives us information about
what copies a book has.



– issued is a relation between a copy of a book and a reader. It gives us
information about which copy of a book each reader has.

– shelved is finite set of COPY.
– readers is a finite set of READERS.

This system has also three given types: COPY, BOOK, READER.
There is one schema calculus definition specified in this specification, which

uses the Z schema composition operator, ”o
9”. It is shown as follows:

Donate =̂ EnterNewCopy o
9 RegisterReader .

This operator will combine the second schema with the first schema, in which
the result of the first schema is an input for operating the second schema.

The schema composition consists of the number of operations taken from
other schema operators. Renaming is the first operation to take place. Its pro-
cesses begin with renaming the same state variables so that the primed ones in
the first schema and non-primed ones in the second schema have the same name
of variables. Afterwards, these renamed schemas are combined using a conjunc-
tion operator. The next process is to hide the common renamed variables in
a declaration part of the new schema. It is followed by adding an existential
quantification which binds these hidden variables in a predicate part of the new
schema.

The new schema, Donate, was constructed by our system as given below:

Donate
∆Library; b? : BOOK ; r? : READER; rep! : Report

∃ c : COPY | c 6∈ dom stock • (stock ′ = stock ⊕ {c 7→ b?} ∧
shelved′ = shelved ∪ {c}) ∧ r? 6∈ readers ⇒
(readers′ = readers ∪ {r?} ∧ rep! = Ok) ∧
r? ∈ readers ⇒ (readers′ = readers ∧ rep! = ReaderAlreadyRegistered)
∧ issued′ = issued

A theorem as given below was added to the generated SAL:

th1 : theorem State |− G( she lved = se t {COPY; } ! empty ) ;

It says that shelved is always empty, which is invalid. It is because c of type
COPY can be added to shelved by performing EnterNewCopy or Donate. Indeed,
the SAL model checker reported a counter-example on the verification of this
SAL file.

This specification requires a simplification which is applied to the final out-
put, otherwise there will be re-declared state variables. Our system could perform
a simple simplification to collapse all state variables and predicates to a reference
of the state schema.

As mentioned previously, the first process of a schema composition is renam-
ing which is to rename several state variables to the common names. In this
system, the common name is specified to be the same as the name of the state
variable, but 0 will be added at the end of this variable. This simplification is
achieved by substituting all renamed common variables for their appropriate
values obtained from related predicates.



The above example can be translated by Z2SAL. It can also be verified and
simulated by the SAL tool.

The following sub-section summarizes results obtained from our experiments
with this system. A discussion in these results is also given in this sub-section.

Summaries of Experiments with the Expansion System This sub-section
discusses several findings found during our experiments with the expansion sys-
tem. Each finding is discussed in a separate paragraph.

Re-declaration of State Variables Re-declaration of state variables is an issue
of implementations of renaming and hiding operations. Since a simplification
is hard to apply on both operations, these operations cannot be further imple-
mented at the moment.

The current Z2SAL assumes that the first schema definition in a Z specifi-
cation is a state schema and the second one is an initialization schema. Z2SAL
defines also one base module in each SAL specification and accepts only one
state schema in each Z specification input, though both SAL and Z allow many
modules and state schemas respectively in one specification.

A SAL module specifies a transition system of a finite-state automaton. A Z
schema represents a state of a system and a collection of these schemas models
behaviour of the system. A state schema is a combination of state variables and
predicates of a system.

A restriction on the number of state schemas in a Z specification is also an
issue of performing a negation in a schema expansion. Variables and negated
predicates in the constructed schema cannot be collapsed into a state schema
inclusion. It is because of a problem of re-declared variables. The only way to
solve this problem is to define at least two state schemas. The first state schema
just defines state variables, whereas the second one defines an inclusion to the
first schema and state predicates. However, Z2SAL does not support many state
schemas either as discussed earlier.

This restriction affects also how a renaming and a hiding are applied to. Both
schema operators cannot be applied to the initialization schema and operational
schemas due to the above same problem and instead to the state schema. Further-
more, Z2SAL also enforces us to define the same name for both the constructed
schema and the state schema. Thus, the application of these two operators will
modify the whole specification.

The Order of Schema Operators Another issue in schema expansion is the order
or the binding of schema operators, especially when brackets are not added in a
definition of schema calculus. Fortunately, operators bindings and associativities
can be defined by using built-in options of the BYACC/J parser generator [10]:
left, right and nonassoc, which mean left, right and no grouping respectively.
Afterwards, several actions can be added in associated grammars to define infor-
mation about these orders. The order of operators tells us the precedence among
them, which is getting higher position, the lower the precedence. Several of these
orders are given in the [8].



Size of Z Specifications One issue that is important to consider is by having
many schema calculus definitions, both a Z specification and a SAL specification
are also getting big in sizes. Another important issue is that a size of a SAL
specification is roughly twice to four times of its Z specification (see discussion
below).

Fortunately, our approach to expand schema calculus definitions scales to
larger specifications. However, as the outcomes of our system will be translated
by Z2SAL and executed by the SAL tool later, the large specification resulted
by our system is possible to be a problem with both tools.

The following describes briefly our experiments with this system. Several
tables are presented which summarize these experiments.

Tables 3, 4, and 5 show us results from several examples of our experiments.
These examples were obtained from several Z books and they will be discussed
below.

Specifications which were used for Experiment 1 to Experiment 8, and Ex-
periment 71 were taken from [2]. It is a library system which has been discussed
in Section 3.2.

On the other hand, Experiment 9, Experiment 24 to Experiment 33, Experi-
ment 54 to Experiment 55, and Experiment 58 to Experiment 63 were taken from
[22]. This is a simple car park system. The state schema and the initialization
schema are as follows:

CarsPark
count : N; maximum : N

count ≤ maximum

InitCarsPark
CarsPark

count = 0
maximum = 3

Experiment 10 to Experiment 14, Experiment 23, Experiment 34 to Experiment
44, Experiment 56 to Experiment 57, and Experiment 64 to Experiment 70 were
taken from [4]. This system regards with bookings for performances on a concert
hall. The state schema and the initialization schema for these experiments are
as follows:

BoxOffice
seating : PSeat
sold : Seat 7→ Customer

dom sold ⊆ seating

InitBoxOffice
BoxOffice′

sold′ = ∅
seating′ = initial allocation

Experiment 15 to Experiment 22 were taken from [7].

Calculator
store : MEMORY → Z
display : Z
arg2 : Z

Init
Calculator

∀m : MEMORY • store(m) = 0
display = 0
arg2 = 0

Above are the state and initialization schemas of this specification. This speci-
fication is a system of a four function calculator.



Table 3. Several Experiments with the Expansion System

No Z Specification Details Verification time in secs

(.tex) Non-simplified Simplified

1. expandingschema 1 ”∨” 0.063 0.031

2. expandingschema 2 ”∧” 0.062

3. expandingschema 3 ”o
9” 0.03

0.733

4. expandingschema 4 ”∧” 0.016

”∨, ∨”

”∨”
2.044

5. expandingschema 5 ”∧, ¬, ∧” 0.031
1.654

6. expandingschema 6 ”∧, [, ]” 0.031
0.686

7. expandingschema 7 ”¬, ∧, [, ]” N/A

8. expandingschema 8 ”∧, [, ]” N/A

”¬, ∧, [, ]”
”∨”

9. expandingsch2 4 ”¬” N/A

10. expandingsch3 1 ”⇒” 0.015

11. expandingsch3 2 ”∧,⇒” 0.032

12. expandingsch3 4 ”⇒, ∧” 0.016

13. expandingsch4 1 ”⇔” 0.015

14. expandingsch4 2 ”∧,⇔” 0.031

15. expandingsch5 1 ”[, /, ]” N/A

16. expandingsch5 2 ”[, /, /, ]” N/A

17. expandingsch6 1 ”\” N/A

18. expandingsch6 2 ”\” N/A

19. expandingsch7 1 ”o
9” 0.031

20. expandingsch8 1 ”∀” N/A

21. expandingsch8 2 ”∀” N/A

22. expandingsch8 3 ”∀, ∧” N/A

23. expandingsch8 6 ”∃” N/A

24. expandingsch1 1 ”∧” 0.0

25. expandingsch1 2 ”∧” 0.016

26. expandingsch1 3 ”∧, ∧, ∧” 0.0

27. expandingsch1 4 ”∧, ∧” 0.015

28. expandingsch1 5 ”∨, ∧” 0.015

29. expandingsch1 6 ”∨, ∧” 0.0

30. expandingsch1 7 ”∧, ∨” 0.015

31. expandingsch1 8 ”∧, ∨” 0.0



Table 4. Several Experiments with the Expansion System (continued)

No Z Specification Details Verification time in secs

(.tex) Non-simplified Simplified

32. expandingsch1 9 ”∧” 0.0

33. expandingsch1 10 ”∨, ∨, ∨” 0.0

34. expandingsch1 11 ”∧, ∨, ∧” 0.016

35. expandingsch1 12 ”∧, ∨, ∧” 0.015

36. expandingsch1 13 ”∧, ∨, ∧” 0.016

37. expandingsch1 14 ”∧, ∨, ∧” 0.016

38. expandingsch1 15 ”∧” 0.016

39. expandingsch1 16 ”∧” 0.016

40. expandingsch1 17 ”∧” 0.016

41. expandingsch1 18 ”∧” 0.031

42. expandingsch1 19 ”∧, ∨, ∧” 0.032

43. expandingsch1 20 ”∧, ∨, ∧” N/A

44. expandingsch1 21 ”∧, ∨, ∧” 0.03

45. expandingsch1 22 ”∧, ∨” 0.031

46. expandingsch1 23 ”∧, ∨” 0.032

47. expandingsch1 24 ”∧, ∨” 0.031

48. expandingsch1 25 ”∧, ∨” 0.016

49. expandingsch1 26 ”∧” 0.015

50. expandingsch1 27 ”∧” 0.031

51. expandingsch1 28 ”∨, ∨, ∨” 0.031

52. expandingsch1 29 ”∨, ∨, ∨” 0.031

53. expandingsch1 30 ”∨, ∨, ∨” 0.047

54. expandingsch1 31 ”∨, ∧, ∨” 0.0

55. expandingsch1 32 ”∨, ∨, ∧” 0.015

56. expandingsch2 1 ”¬” N/A

57. expandingsch2 2 ”¬, ∧” 0.032

58. expandingsch2 3 ”¬” N/A

59. expandingsch2 5 ”¬, ∧” N/A

60. expandingsch2 6 ”¬, ∧” N/A

61. expandingsch2 7 ”∧, ¬” 0.0

62. expandingsch2 8 ”∧, ¬” 0.0

63. expandingsch2 9 ”¬, ∧, ¬” N/A

64. expandingsch3 3 ”∧,⇒” 0.016

65. expandingsch3 5 ”⇒, ∧” 0.015

66. expandingsch3 6 ”⇒, ∧” 0.031

67. expandingsch3 7 ”⇒, ∨,⇒” N/A

68. expandingsch3 8 ”∧,⇒, ∧” 0.015

69. expandingsch3 9 ”∧,⇒, ∧,⇒, ∧” 0.015



Table 5. Several Experiments with the Expansion System (continued)

No Z Specification Details Verification time in secs

(.tex) Non-simplified Simplified

70. expandingsch8 5 ”∀” N/A

71. expandingschema 9 ”∧, ¬, ∧” N/A

”∧, [, ]”
”¬, ∧, [, ]”
”∨”

”∧, ∨”

Experiment 45 to Experiment 53 were taken from [23], but have been modi-
fied in several places to be able to be translated by Z2SAL. One of these mod-
ifications is to have one state schema. In the original specification, there are
references to several different schemas. These references indicate the referenced
schemas are state schemas. The modification is necessary to be translated by
Z2SAL. A state and initialization schemas are given as follows:

Flexi
Standard Hours,Flexitime Hours : Time → Period
worked : Ident 7→ Period; in : Ident 7→ Time

dom in ⊆ domworked

InitFlexi
Flexi

in = ∅
worked = ∅

As can be seen from Table 3, 4, and 5, a simplification has only been per-
formed on an output of expandingschema 1 specification. It is indicated by
two verification times in associated columns. Outputs of expandingschema 3,
expandingschema 4, expandingschema 5, and expandingschema 6 have two
verification times in one column. The first time is a verification time with
no theorem and the second one is a time with one theorem. There are three
specifications that have many schema calculus definitions: expandingschema 4,
expandingschema 8, and expandingschema 9. ”N/A”s in several rows mean that
the related specification cannot be translated by Z2SAL. All of these specifica-
tions contain re-declarations of state variables. It is because these variables could
not be collapsed by our system to references of a state schema.

Regarding size of Z specifications, this will be discussed below. Tables 6, and
7 show us sizes of our Z specifications on this experiments. As can be seen from
these three tables, a range of sizes of our Z specification inputs is between 1
and 3 kilobytes, otherwise the ranges are 1 to 8 and 1 to 14 for Z specification
outputs and SAL specifications respectively. Sizes of SAL specifications shown
in this table are original sizes producing by Z2SAL. As discussed above, a few of



these SAL specifications have been modified as required in order to be executed
by the SAL tool successfully or have been simplified to their compact form of
predicates. Thus, their sizes can be different from the original ones.

”input” means a Z specification input file for our system. On the other hand,
”output” means a Z specification output file generated by our system after per-
forming an expansion process, ”N/A”s in output means an associated Z speci-
fication input could not be expanded by our system either because of errors in
the input file or because of bugs on our system, ”N/A”s in SAL specifications

means an associated Z specification could not be translated by Z2SAL. It can
also be seen that a ”N/A” in input makes this Z specification is not possible to
be further processed.

4 Conclusion and Future Work

Our experiments find that the SAL language is not a case sensitive language.
Another finding is that a bug on a Z2SAL translation of a range of numbers is
found. This finding convinces us to such a bug since our other experiments with
Z2SAL also find this.

All tables, which summarize our experiments, show that majority of our
running examples can be redefined or expanded by our system. Several of them
can also be translated by Z2SAL, verified by the SAL model checker, or simulated
by the SAL simulator.

As a conclusion, redefinition and schema expansion, which pre-process a Z
specification, can benefit the scope of translation of Z2SAL. It is because a Z
specification can consist of generic constant or schema calculus definitions. This
fact can support Z2SAL to translate a variety of Z specifications, which at the
end can also support model checking Z specifications.

However, our method of implementing this system seems that our method
is not feasible for larger and more complex specifications. It is because such
specifications require more time to be translated by Z2SAL and to be executed
by the SAL tool.

Expanded schemas can make the larger specification even larger. A more
complex generic constant definition means several conditions. It can be more
complex types of generic constant variables. It can also be a more complex
predicate part of this definition. On the other hand, a more complex schema
calculus definition means the definition contains a combination of several schema
operators. Inevitably, further work could extend the system so it is able to run
more complex Z specifications.

Furthermore, the out of memory error which is often encountered during
simulation is also beneficial to be addressed. How abstraction can be applied
to the related schemas to reduce the memory consumption is planned to be
investigated.

Moreover, re-declaring state or global variables could be approached by im-
plementing a better simplification in predicates. It could also include upgrading
Z2SAL to a version that accepts many state schemas and references to them.



Thus, one state schema can be specified to have just a variable part. Another
state schema has a predicate part. Having these state schemas, a user can col-
lapse state variables easily without a bother on negated predicates of other state
schema.

Other future work is our approach to a SAL translation of a user defined
function or constant could also be automated. There are two options for this
automation: implementing it as an extension to this system or adding it as
an extension to Z2SAL system. It appears that the second option is an easier
method to implement.
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Table 6. Sizes of Z Specifications

Z Specifications Sizes in KB

(.tex) input output SAL specifications

expandingschema 1 2 2 7

expandingschema 2 2 2 6

expandingschema 3 2 2 6

expandingschema 4 2 3 10

expandingschema 5 2 3 9

expandingschema 6 2 2 4

expandingschema 7 2 3 N/A

expandingschema 8 3 5 N/A

expandingsch2 4 1 N/A N/A

expandingsch3 1 1 1 3

expandingsch3 2 2 2 4

expandingsch3 4 2 2 4

expandingsch4 1 2 2 4

expandingsch4 2 2 2 5

expandingsch5 1 1 1 N/A

expandingsch5 2 1 1 N/A

expandingsch6 1 1 1 N/A

expandingsch6 2 2 2 N/A

expandingsch7 1 1 1 2

expandingsch8 1 2 2 N/A

expandingsch8 2 2 2 N/A

expandingsch8 3 2 2 N/A

expandingsch8 6 1 2 N/A

expandingsch1 1 1 1 3

expandingsch1 2 1 1 3

expandingsch1 3 1 1 3

expandingsch1 4 1 1 3

expandingsch1 5 1 1 3

expandingsch1 6 1 1 3

expandingsch1 7 1 1 3

expandingsch1 8 1 1 3

expandingsch1 9 1 1 3

expandingsch1 10 1 1 3

expandingsch1 11 1 2 3

expandingsch1 12 1 2 4

expandingsch1 13 1 2 4

expandingsch1 14 1 2 3

expandingsch1 15 1 1 3

expandingsch1 16 1 1 3

expandingsch1 17 1 1 3

expandingsch1 18 1 1 3

expandingsch1 19 2 2 4

expandingsch1 20 2 N/A N/A

expandingsch1 21 2 2 4



Table 7. Sizes of Z Specifications (continued)

Z Specification Sizes in KB

(.tex) input output SAL specifications

expandingsch1 22 2 2 4

expandingsch1 23 2 2 4

expandingsch1 24 2 2 4

expandingsch1 25 2 2 5

expandingsch1 26 2 3 7

expandingsch1 27 2 3 7

expandingsch1 28 3 5 14

expandingsch1 29 3 5 14

expandingsch1 30 3 5 14

expandingsch1 31 1 1 3

expandingsch1 32 1 1 3

expandingsch2 1 1 1 N/A

expandingsch2 2 1 1 3

expandingsch2 3 1 2 N/A

expandingsch2 5 1 2 N/A

expandingsch2 6 1 2 N/A

expandingsch2 7 1 1 3

expandingsch2 8 1 1 3

expandingsch2 9 1 2 N/A

expandingsch3 3 2 2 4

expandingsch3 5 2 2 4

expandingsch3 6 2 2 4

expandingsch3 7 2 2 N/A

expandingsch3 8 2 2 4

expandingsch3 9 2 2 5

expandingsch3 10 2 N/A N/A

expandingsch6 3 2 N/A N/A

expandingsch6 4 2 N/A N/A

expandingsch7 2 2 N/A N/A

expandingsch8 4 2 N/A N/A

expandingsch8 5 1 2 N/A

expandingschema 9 3 8 N/A


