
Verification of a Rule-Based Expert System

by Using SAL Model Checker

Maria Ulfah Siregar1, Sayekti Abriani2
1Department of Informatics, Graduate Program, Faculty of Science and Technology

UIN Sunan Kalijaga

Yogyakarta, Indonesia
1maria.siregar@uin-suka.ac.id, 2yekti001@gmail.com

Abstract— Verification of a rule-based expert system ensures

that the knowledge base of the expert system is logically correct

and consistent. Application of verification into a rule-based expert

system is one approach to integrate software engineering

methodology and knowledge base system. The expert system,

which we has built, is a rule-based system developed by using

forward chaining method and Dempster-Shafer theory of belief

functions or evidence. We use Z language as the modelling

language for this expert system and SAL model checker as the

verification tool. To be able to use SAL model checker, Z2SAL will

translate the Z specification, which models the system. In this

paper, we present some parts of our Z specification that represent

some parts of our rule-based expert system. We also present some

parts of our SAL specification and theorems that we added to this

SAL specification. At the last, we present the usage of SAL model

checker over these theorems. Based on these model-checking

processes, we argue that the results are expected. This means that

each of theorems can be model checked and the outputs of those

model checking are the same as the outputs that we obtain from

manual investigation; either it is VALID or INVALID. Other

interpretation of the model check’s results is some parts of our

rule-based expert system have been verified.

Keywords— verification, expert system, rule-based system,

Z2SAL, SAL model checker.

I. INTRODUCTION

Integration of validation and verification to a system is

inevitably abundant evidence now, especially on a complex

system. It is unfortunate if a system cannot be evaluated which

limit our ability to use such a system [1].

Any field of intelligent system, such as an expert system, is

no exception needing verification and validation, though

verification and validation are two distinct activities [2]. The

purpose of V & V is to cut errors from any intelligent system.

Another purpose is to certify system correctness [3].

As one of formal languages, the usage of Z in academia [4]

and industry has increased significantly. Z is a specification

language, which has universal purpose. Z uses mathematics to

state systems, schemas to build and modularized the

specification [5]. This language has also the international

standard. Z produces more formal specifications and they are

ambiguity free which mechanic analyzation can be performed

on them [6].

Specifications of a system will make verification of the

system easier because we can perform the verification in the

beginning stage of the development. Thus, it can decrease cost

in implementation and test phases [7][8][9]. Formal methods are

suggested to use in the development of critical systems [10].

Formal methods are a set of mathematical based tool which is

the most promising techniques that allow the development of a

complete, precise, and correct specification or model for system

behavior and properties [11][12]. It also allows analyzing

complex software systems. For this reason, we modelled a rule-

based expert system as a Z specification to verify this expert

system by using model checking techniques. We use Z2SAL

[13] to translate our Z specification to a SAL specification which

then can be verified by SAL model checkers [14].

II. RELATED WORKS

As mentioned in [15][2], several techniques have been

proposed to verify rule-based systems to detect inconsistencies

in knowledge bases, such as checking rules pair-wisely,

implementing multiple rules in longer inference chains, using

some graphical notation such as Petri nets and graphs, or using

Algebraic methods. All of these approaches are before 2000.

A relatively new approach is found in [2], which is to use

formal method to verify a rule-based expert system. Another

approach is to use graph rewriting-based solution to verify and

validate a rule-based expert system [16]. Unfortunately, we

could only find both paper relating to verification or validation

of rule-based expert systems that are published at least 5 years

ago.

We use the same approach as the one found in [2], which is

to use formal method for verifying a rule base expert system.

However, our research uses different formal language. We chose

Z formal language to model our rule-base expert system because

this language can model a system more formal and free from

ambiguity [17]. Furthermore, since Z language has schemas, we

can use these properties to present states. For the verification,

we use SAL model checker. Our approach has several

advantages over other approaches:

• By using Z formal language, we can design our rules as

predicates in schemas. These predicates are easily defined

using logical operator supported by Z.

• Providing this Z specification modelled our expert system,

we can translate it into another specification in SAL

language by using Z2SAL.

• We could input the resulted SAL specification to SAL

model checker for verification.

III. OUR RULE-BASED EXPERT SYSTEM

An expert system is "a computer system that emulates, or

acts in all respects, with the decision-making capabilities of a

human expert" [18]. Knowledge-based systems as one type of

expert systems are worthy in cases that are difficult to solve by

using purely algorithmic or mathematical solutions [19]. One

technique to represent or store knowledge on a knowledge-based

system is by representing knowledge from experts as rules,

which are declarative, in the form of “if antecedent then

consequent”. The antecedent clause is a test, which evaluate to

True or False [20].

Increasing interest in AI with the management of uncertainty

and evidential reasoning, resulted some methods [21]. One of

them is Dempster-Shafer theory of evidence. This theory is

claimed as a promising improvement on traditional approaches

to decision analysis [22].

Our rule-based expert system serves as an expert gives

recommendation to home medication for mild ingestion diseases

[23][24]. There are 20 symptoms of these diseases and 6 mild

digestive diseases, see Table 8 in [24]. A set of rules represent

relations of these symptoms and mild digestive diseases.

This expert system uses uncertainty reasoning based on

Dempster-Shafer. Calculation with Dempster Shafer requires

probabilities of density functions. This density represents a

belief value in indications of a sickness. We obtained these

densities from a pharmacist. Table 9 in [24] shows those

densities.

A user does consultations to this system to know what the

sickness is and medication that will help to give first aid to the

sickness. This user performs a consultation by entering

symptoms of his disease.

IV. MODEL CHECKING OUR SYSTEM

The model checking method is a proper choice when

compared with methods relying upon simulation, testing and

deductive reasoning [25]. Verification by model-checking

techniques is a well-established area of research [26].

Proficiency in mathematical disciplines is not necessary

available to model check specifications [25].

Although it has advantages, there are also drawbacks. First,

it only applies to finite state systems, and second, these cannot

be so large since it can suffer from state space explosion

problems [24][26][27]. These are due to the search strategy,

which uses an exhaustive searching of the state space of a system

using suitable graph algorithms [24][26].

We use SAL model checker to verify our system. To do this,

we should have a SAL specification of our system.

SAL is a framework, which is used to change perceptions

and implementations of model checkers and theorem provers.

These perceptions and implementations at first were based on

verification to a calculation of properties or symbolic analysis

such as abstraction, slicing and composition [28]. SAL combines

some different tools such as abstraction, program analysis,

theorem proving and model checking towards a symbolic

analysis of transition systems [14]. The current version of SAL

is 3.3 which can be downloaded from [29]. The SAL language

syntax is given in [14].

We added six theorems to our SAL specification. This

specification is the result of translation by Z2SAL. Z2SAL [13]

is a translator of a Z language specification into a SAL language

specification [14].

A SAL file consists of a SAL module and/ or several SAL

contexts. The module defines a transition system of Z states [30].

The outline of a SAL module is as follows:

State : MODULE =

 BEGIN

 INPUT ...

 LOCAL ...

 OUTPUT ...

 INITIALIZATION [...]

 TRANSITION [

 ...

]

END

The SAL context declares types, constants, modules, and

modules properties [14]. Z2SAL defines several Z mathematical

tool-kits, which are necessary for the related Z specification, in

separated but integrated SAL context files. More information

about Z2SAL is provided in [31]. It includes also a

downloadable version of this translation tool.

We have added six theorems to our SAL specification. The

first three and the last two theorems represent safety properties.

The first theorem says that it is always the case that the

unavailability of a symptom indicates there is no infection. The

second theorem says that it is always the case that the absent

from C disease shows that there is neither G1, G5, G6, G7, G8,

nor G9 symptom exists. The third theorem in this classification

asserts that the same symptom will never exist more than once.

The five theorem is the opposite of the first theorem. We add

this theorem to see how SAL model checker generates the

counterexample. The last theorem says that if a symptom is not

G1 then in the future that symptom could be G1.

Safety properties will be proven by using forward

reachability method in sal-smc, as a default [29]. A safety

property asserts that nothing bad happens through execution of

a system [32].

The fourth theorem represent liveness property. Liveness

properties assert that something good eventually happens [32].

Our fourth theorem says that it is always the case that the present

in G1 symptom indicates the infection of either A or C disease.

V. METHOD

Based on the expert system, we designed a Z specification

for this system manually. It is emerged now the opposite way;

to design formal models of systems, model inference is used

which is combined with expert systems [33].

 We declared diseases to be values for a global variable

Decision. The same also applies to symptoms; they are

declared values of a global variable, namely TypeS.

Rules in our expert system that relate symptoms with

diseases are specified as predicates in our state schema. Each

rule is presented with a symptom that implies diseases. The state

schema declares several variables that represent a disease, a

symptom and densities. As Z2SAL has not yet supported real

numbers, we declare densities with a type of integer.

We declare initial values in the initialization schema. We

include also in this schema the assigned values for densities,

which are shown on Table 9 in [23].

The last schema is an operational schema. In this schema, we

specify predicates that represent calculations of new densities of

potential diseases. Another process here is to decide which

disease is caught based on the calculation.

This Z specification was translated into the SAL

specification by using Z2SAL. Then, we presented our theorems

as explained above.

Following flow chart on Fig. 1 shows our works. As can be

seen from Fig. 1, the first process is to design a Z specification

of our rule-based expert system. We do not represent the expert

system entirely in our Z specification. It is because our difficulty

in representing some parts of the system. We designed three

schemas in our Z specification: a state schema, an initial schema,

and one operation schema. Our state schema, namely

ruleBase, represents rules in our rule-based expert system.

There are 20 rules, which indicates there are 20 symptoms in our

rule-based expert system. The initial schema specifies initial

values for the state variables. The operational schema, namely

advise, shows how to conclude what sickness is somebody

has based on the symptoms.

The second process is to translate our Z specification using

Z2SAL translator. Fortunately, Z2SAL can translate our Z

specification though there are manual modifications in some

places. These modifications are discussed further in the next

section, Result and Discussion.

After the SAL specification and some mathematical context

files are generated by Z2SAL, we added some theorems in the

resulted SAL specification (not in the mathematical context

files). The explanation to these theorems can be read in other

parts of this paper.

Fig. 1. Flow chart of our works

The last process is to model check the SAL specification. We

use SAL model checker to perform this model checking. Again,

the discussion on this process can be read in the next section.

Our result and discussion are given in the following section.

It begins with the presentation of our Z specification.

VI. RESULT AND DISCUSSION

We present some of our Z specification as shown here:

Decision ::= A | B | C | D | E | F | clear

TypeS ::= G1 | G2 | G3 | G4 | G5 | G6 | G7 | G8 | G9 |G10 | G11 | G12 | G13 |

G14 | G15 | G16 | G17 | G18 | G19 | G20 | nothing

The above declarations represent global variables that have

enumerated values. These Z paragraphs have no box to declare

free types. ::= symbol stands for a free type definition that has |

to separate one element with other elements [34]. Decision has

types of disease, where TypeS has types of symptoms. Thus,

there are 20 symptoms in our system, G1 to G20. clear means

there is no disease caught, as well as nothing means there is no

symptom. A, B, C, D, E and F are names of disease modelled by

our rule-based Expert System. We define names of disease as

types for a global variable, Decision, to be able to use the

variable as a type for other variables declared in schemas. The

same reason is applied to another global variable, TypeS.

Our state schema is shown in top left of the next page. There

are 20 symptoms which each of these is an antecedent of its

implication of involved diseases. D1 to D20 are measures of

belief or densities. In our expert system, these numbers are in

real, but we changed them into integer types that suits the

translator. However, we changed them back into real number in

the SAL specification. Variables, which begin with dTheta are

new densities of several combinations of symptoms.

decision is used to store the caught disease. By defining a

schema, we can show a system’s state and behavior of a

computer system [34].

 ruleBase

Infected: Decision

decision: ℙDecision

symptom: TypeS

D1, D2, D3, D4, D5, D6, D7, D8, D9,D10, D11, D12,

D13, D14, D15, D16,D17, D18, D19, D20: ℤ

dTheta1, dTheta2, dTheta31, dTheta32,dTheta33,

dTheta34, dTheta4, dTheta51,dTheta51, dTheta52,

dTheta53, dTheta54,dTheta55, dTheta56, dTheta57, dTheta58: ℤ

(symptom = G1 ⇒(Infected = A ∨ Infected = C))

(symptom = G2 ⇒(Infected = A))

(symptom = G3 ⇒(Infected = A))

(symptom = G4 ⇒(Infected = A ∨ Infected = B))

(symptom = G5 ⇒(Infected = C ∨ Infected = D ∨ Infected = F))

(symptom = G6 ⇒(Infected = C ∨ Infected = D))

(symptom = G7 ⇒(Infected = B ∨ Infected = C))

(symptom = G8 ⇒(Infected = C))

(symptom = G9 ⇒(Infected = B ∨ Infected = C))

(symptom = G10 ⇒(Infected = E))

(symptom = G11 ⇒(Infected = E))

(symptom = G12 ⇒(Infected = E))

(symptom = G13 ⇒(Infected = E))

(symptom = G14 ⇒(Infected = E))

(symptom = G15 ⇒(Infected = A))

(symptom = G16 ⇒(Infected = F))

(symptom = G17 ⇒(Infected = F))

(symptom = G18 ⇒(Infected = B))

(symptom = G19 ⇒(Infected = B))

(symptom = G20 ⇒(Infected = B))

It is usual to have two parts separated by a line (in a vertical

style of schema). The part, which is over the line, is to declare

variables. In a case it is a state schema, the variables are state

variables, which can be called in other schemas. Other variable

is global variable that has been declared in earlier part of our Z

specification. The part, which under the line, is to define

predicates of a schema. A predicate is an operation that could

change variables’ values. It can also constrain variables’ values

[34]. A set will be defined from the satisfied predicates [34].

Therefore, in the predicate part of our state schema, a value

is defined for Infected. We implemented rules from our

expert system as implication statements over all symptoms.

Thus, each symptom relates to one or more sicknesses.

The initialization schema is shown below. This schema

relates with post-operations of the state schema as implied by

declaring the state schema’s name with an apostrophe. It means

that after the operation of the initialization schema, involved

state schema's variables will be changed. This schema defines

first values for all state variables.

 Initial

ruleBase′

Infected′= clear

symptom′= nothing

D1′= 9 ∧ D2′= 6 ∧ D3′= 6 ∧ D4′= 6 ∧ D5′= 9 ∧ D6′= 7

∧ D7′= 8 ∧ D8′= 6 ∧ D9′= 8 ∧ D10′= 9 ∧ D11′= 8

∧ D12′= 8 ∧ D13′= 9 ∧ D14′= 6 ∧ D15′= 6 ∧ D16′= 7

∧ D17′= 6 ∧ D18′= 9 ∧ D19′= 9 ∧ D20′= 6 ∧ dTheta1′= 0

∧ dTheta2 ′= 0 ∧ dTheta31′= 0 ∧ dTheta32′= 0 ∧ dTheta33′= 0

∧ dTheta34′= 0 ∧ dTheta4′= 0 ∧ dTheta51′= 0 ∧ dTheta52′= 0

∧ dTheta53′= 0 ∧ dTheta54′= 0 ∧ dTheta55′= 0 ∧ dTheta56′= 0 ∧

dTheta57′= 0 ∧ dTheta58′= 0 ∧ density′= 0 ∧ decision′ = ∅

We do not give our operational schema, advise, because

this schema is long enough. In this schema, we define predicates

representing the calculation of Dempster Shafer method of our

expert system. It can be read further in [22].

Our Z specification could accept a minimum of two

symptoms and at most of three symptoms to ease the calculation

of densities compared to our rules that could have more than

three symptoms. The biggest density means that the sickness is

recorded on its name.

We have not added medication for each disease in our Z

specification due to time limitation. However, we think the

medication could be added in the initialization schema.

As mentioned earlier, we have changed the real number into

integer number, but changed back to real number in the SAL

specification. It is because Z2SAL does not support real number

in Z specifications. We change the integer type in the original

SAL specification into real type. The original SAL specification

before the manual change is as follows:

INT : TYPE = [-1..21];

LOCAL D1 : INT

D1' IN {x : REALL | TRUE};

We change also multiplication operations into summation

with the same reason as above. We change the summation back

into multiplication in the accompanied SAL specification.

One example of a summation operation in our Z

specification is as follows:

dTheta31 = (1 - dTheta1) + (1 - dTheta2)

The original SAL part of that line is as follows:

dTheta31 = (1 - dTheta1) + (1 - dTheta2)

Then we changed it manually into following:

dTheta31 = (1 - dTheta1) * (1 - dTheta2)

We also modified several lines in the TRANSITION section,

which represents advice, as these lines do not match with our Z

specification. We did all of these changes manually.

Some parts of our SAL specification is presented here. This

specification is generated by Z2SAL. However, we have

modified some of this SAL specification.

The original SAL specification consists of 580 lines. Thus,

we do not put this specification entirely in this paper.

homeMed : CONTEXT = BEGIN

REALL : TYPE = [-1..21];

Decision : TYPE = DATATYPE

 …

END;

TypeS : TYPE = DATATYPE

 …

END;

State : MODULE =

 BEGIN

 …

 DEFINITION

 invariant__ = (

…

 INITIALIZATION [

 …

]

 TRANSITION [

 advise :

 …

]

 END;

 …

END

We do not provide SAL parts of advise, which is an

operation schema of our Z specification. Decision about the

sickness will be calculated based on the symptoms. We specify

three input variable of symptoms (symptom1? to

symptom3?) in this paper. Each of these symptoms can be one

of 20 symptoms and they cannot be the same. For example:

(symptom1? = G1 => (symptom2? /= G1 AND symptom3? /= G1 AND
dTheta1 = 1 - D1 AND Infected = A AND decisionSet1_' = set {Decision;} !

insert(decisionSet1_', Infected) AND Infected = C AND decisionSet1_' = set

{Decision;} ! insert(decisionSet1_', Infected)))

Theorems will be put at the bottom of the above SAL

specification, between the second last END and the last END. We

have discussed briefly about our theorems in Section IV.

The first theorem is as follows:

Theorem 1. th1: theorem State |- G(NOT(symptom = nothing AND Infected /=

clear));

Other four theorems are as follows:

Theorem 2. th2: theorem State |- G(NOT(Infected = C) → (NOT(symptom =

G1) OR NOT(symptom = G5) OR NOT(symptom = G6) OR NOT(symptom =

G7) OR NOT(symptom = G8) OR NOT(symptom = G9)));

Theorem 3. th3: theorem State |- G(NOT(symptom = G1 AND X(symptom =

G1)));

Theorem 4. th4: theorem State |- G(symptom = G1 → Infected = A OR Infected

= C);

Theorem 5. th5: theorem State |- G(symptom /= nothing AND Infected = clear);

Theorem 6. th6: theorem State |- G(symptom = G1 AND X(symptom = G1));

They are defined by using LTL (see [35]) with SAL model

checker notations [14][29]. G means it is applied globally or

always the case. X means it is happened in the next state.

The first four and the last theorem are proved as VALID.

However, the five theorem gives a counterexample because it is

INVALID. The counterexample is as follows:

Counterexample for 'th5' located at [Context: homeMed, line(578), column(2)]:

========================

Path

========================

Step 0:

--- Input Variables (assignments) ---

symptom1? = G7

symptom2? = G14

symptom3? = G7

--- System Variables (assignments) ---

Infected = clear

decision(A) = false

...

invariant__ = true

The fifth theorem does not support the System Variables

(assignments). A command to SAL model checker is:

$ sal-smc homeMed

sal-smc is the command to do symbolic model checking,

where homeMed is the name of the SAL context.

Before we leave this section, we summarize our contribution

as follows:

• design a Z specification which represents the rule-based

expert system

• manual modification in the SAL specification to suit our Z

specification and rule-based expert system

• specify theorems and add it to the SAL specification

VII. CONCLUSION

We have designed the Z specification for some parts of our

expert system. We have also verified our SAL specification by

adding six theorems. These theorems were model checked by

SAL model checker. The results are as the same as the ones that

we get from manual investigation. Thus, we argue that our Z

specification along the SAL specification could represent some

parts of our expert system. This means that we can model our

expert system using specification languages; Z notation and

SAL language. This model could show the functionalities of our

rule-based expert system. The theorems could also represent

properties of our expert system. Based on the model check’s

results, some parts of our expert system have been verified.

ACKNOWLEDGMENT

I want to thank John Derrick and Anthony Simons at the

University of Sheffield for the discussion. I also want to thank

Zarina Shukur at Universiti Kebangsaan Malaysia for the

recommendation for making this paper more interesting.

REFERENCES

[1] R. Knauf, A. Gonzalez, and K. P. Jantke, “Validating rule-based systems:

a complete methodology,” 1999, vol. 5, pp. 744–749 vol.5.

[2] M. Brezovan and C. Badica, “Using the Event-B Formal Method and the
Rodin Framework for Verification the Knowledge Base of an Rule-Based

Expert System,” 2018, pp. 107–127.

[3] A. J. Gonzalez and V. Barr, “Validation and verification of intelligent

systems - what are they and how are they different?,” J. Exp. Theor. Artif.

Intell., vol. 12, no. 4, pp. 407–420, Oct. 2000.

[4] N. Plat, J. van Katwijk, and H. Toetenel, “Application and benefits of

formal methods in software development,” Softw. Eng. J., vol. 7, no. 5,

pp. 335–346, 1992.

[5] S. Stepney and S. P. Lord, “Formal specification of an access control

system,” Softw. Pract. Exp., vol. 17, no. 9, pp. 575–593, 1987.

[6] D. Jackson, “Abstract model checking of infinite specifications,” in FME

’94: Industrial Benefit of Formal Methods, 1994, pp. 519–531.

[7] B. Potter, D. Till, and J. Sinclair, An Introduction to Formal Specification

and Z, 2nd ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1996.

[8] M. M. West, “Issues in Validation and Executability of Formal

Specifications in the Z Notation,” University of Leeds, 2002.

[9] J. Woodcock and J. Davies, Using Z: Specification, Refinement, and

Proof. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1996.

[10] A. E. Haxthausen, An Introduction to Formal Methods for the

Development of Safety-critical Applications. 2010.

[11] C. Matthews, “Fuzzy concepts and formal methods: A sample
specification for a fuzzy expert system,” in IEEE International

Conference on Fuzzy Systems, 2002, vol. 2, pp. 1150–1155.

[12] X. He, H. Yu, and Y. Deng, “Formal Methods for Specifying and

Analyzing Complex Software Systems,” in Modern Formal Methods and
Applications, H. A. Gabbar, Ed. Dordrecht: Springer Netherlands, 2006,

pp. 123–150.

[13] J. Derrick, S. North, and A. J. H. Simons, “Z2SAL: a translation-based

model checker for Z,” Form. Asp. Comput., vol. 23, no. 1, pp. 43–71, Jan.

2011.

[14] L. de Moura, S. Owre, and N. Shankar, “The SAL Language Manual,”

2019.

[15] E. Pira, M. R. Z. Miralvand, and F. Soltani, “Verification of confliction

and unreachability in rule-based expert systems with model checking,”

CoRR, vol. abs/1404.2, 2014.

[16] L. Lengyel, “Validating Rule-based Algorithms,” Acta Polytech.

Hungarica, vol. 12, no. 4, pp. 59–75, 2015.

[17] M. U. Siregar, A pre-processing tool for Z2SAL to broaden support for

model checking Z specifications. 2018.

[18] J. C. Giarratano and G. D. Riley, Expert system: principles and

programming. 2007.

[19] G. J. Nalepa, “Methodologies and Technologies for Rule-Based Systems

Design and Implementation. Towards Hybrid Knowledge Engineering,”
in Knowledge-Driven Computing: Knowledge Engineering and

Intelligent Computations, C. Cotta, S. Reich, R. Schaefer, and A.

Lig\keza, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp.

183–198.

[20] D. Arias-Aranda, J. L. Castro, M. Navarro, J. M. Sánchez, and J. M.

Zurita, “A Fuzzy Expert System for Business Management,” Expert Syst.

Appl., vol. 37, no. 12, pp. 7570–7580, 2010.

[21] L. A. Zadeh, “A Simple View of the Dempster-Shafer Theory of Evidence
and Its Implication for the Rule of Combination,” AI Mag., vol. 7, no. 2,

pp. 85–90, 1986.

[22] M. Beynon, B. Curry, and P. Morgan, “The Dempster-Shafer theory of

evidence: An alternative approach to multicriteria decision modeling,”

Omega, pp. 37–50, 2000.

[23] S. Abriani, “Sistem Rekomendasi Swamedikasi Penyakit Ringan Sistem

Pencernaan dengan Metode Dempster Shafer.” 2012.

[24] S. Abriani, K. Mukhoyyaroh, and M. U. Siregar, “Recommendation

System of Self-Medication for Mild Digestive Diseases with Dempster

Shafer Method,” IJID, vol. 3, no. 1, 2014.

[25] E. M. Clarke and B.-H. Schlingloff, “Handbook of Automated

Reasoning,” A. Robinson and A. Voronkov, Eds. Amsterdam, The
Netherlands, The Netherlands: Elsevier Science Publishers B. V., 2001,

pp. 1635–1790.

[26] M. Kacprzak, A. Lomuscio, T. Łasica, W. Penczek, and M. Szreter,

“Verifying Multi-agent Systems via Unbounded Model Checking,” in
Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in

Computer Science), 2005, vol. 3228, pp. 189–212.

[27] R. Pelanek, “Reduction and Abstraction Techniques for Model

Checking,” Masaryk University, 2006.

[28] S. Bensalem, Y. Lakhnech, and S. Owre, “Computing Abstractions of
Infinite State Systems Compositionally and Automatically,” in Computer

Aided Verification, 1998, pp. 319–331.

[29] B. Dutertre, Symbolic Analysis Laboratory. 2010.

[30] J. Derrick, S. North, and T. Simons, “Issues in Implementing a Model

Checker for Z,” in Formal Methods and Software Engineering, 2006, pp.

678–696.

[31] A. J. H. Simons, “Z2SAL: Translation-Based Tools for Z.” 2012.

[32] “Safety & Liveness Properties,” pp. 1–59.

[33] W. Durand and S. Salva, “Inferring Models with Rule-based Expert

Systems,” in Proceedings of the Fifth Symposium on Information and

Communication Technology, 2014, pp. 92–101.

[34] T. Marris, “Z Notes.”

[35] M. Huth and M. Ryan, Logic in Computer Science: Modelling and

Reasoning about Systems. Cambridge University Press, 2004.

