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Abstract— Verification of a rule-based expert system ensures 

that the knowledge base of the expert system is logically correct 

and consistent. Application of verification into a rule-based expert 

system is one approach to integrate software engineering 

methodology and knowledge base system. The expert system, 

which we has built, is a rule-based system developed by using 

forward chaining method and Dempster-Shafer theory of belief 

functions or evidence. We use Z language as the modelling 

language for this expert system and SAL model checker as the 

verification tool. To be able to use SAL model checker, Z2SAL will 

translate the Z specification, which models the system. In this 

paper, we present some parts of our Z specification that represent 

some parts of our rule-based expert system. We also present some 

parts of our SAL specification and theorems that we added to this 

SAL specification. At the last, we present the usage of SAL model 

checker over these theorems. Based on these model-checking 

processes, we argue that the results are expected. This means that 

each of theorems can be model checked and the outputs of those 

model checking are the same as the outputs that we obtain from 

manual investigation; either it is VALID or INVALID. Other 

interpretation of the model check’s results is some parts of our 

rule-based expert system have been verified. 

Keywords— verification, expert system, rule-based system, 

Z2SAL, SAL model checker. 

I.  INTRODUCTION 

Integration of validation and verification to a system is 

inevitably abundant evidence now, especially on a complex 

system. It is unfortunate if a system cannot be evaluated which 

limit our ability to use such a system [1]. 

Any field of intelligent system, such as an expert system, is 

no exception needing verification and validation, though 

verification and validation are two distinct activities [2]. The 

purpose of V & V is to cut errors from any intelligent system. 

Another purpose is to certify system correctness [3].   

As one of formal languages, the usage of Z in academia [4] 

and industry has increased significantly. Z is a specification 

language, which has universal purpose. Z uses mathematics to 

state systems, schemas to build and modularized the 

specification [5]. This language has also the international 

standard. Z produces more formal specifications and they are 

ambiguity free which mechanic analyzation can be performed 

on them [6]. 

Specifications of a system will make verification of the 

system easier because we can perform the verification in the 

beginning stage of the development. Thus, it can decrease cost 

in implementation and test phases [7][8][9]. Formal methods are 

suggested to use in the development of critical systems [10]. 

Formal methods are a set of mathematical based tool which is 

the most promising techniques that allow the development of a 

complete, precise, and correct specification or model for system 

behavior and properties [11][12]. It also allows analyzing 

complex software systems. For this reason, we modelled a rule-

based expert system as a Z specification to verify this expert 

system by using model checking techniques. We use Z2SAL 

[13] to translate our Z specification to a SAL specification which 

then can be verified by SAL model checkers [14].  

 

II. RELATED WORKS 

As mentioned in [15][2], several techniques have been 

proposed to verify rule-based systems to detect inconsistencies 

in knowledge bases, such as checking rules pair-wisely, 

implementing multiple rules in longer inference chains, using 

some graphical notation such as Petri nets and graphs, or using 

Algebraic methods. All of these approaches are before 2000. 

A relatively new approach is found in [2], which is to use 

formal method to verify a rule-based expert system. Another 

approach is to use graph rewriting-based solution to verify and 

validate a rule-based expert system [16]. Unfortunately, we 

could only find both paper relating to verification or validation 

of rule-based expert systems that are published at least 5 years 

ago. 

We use the same approach as the one found in [2], which is 

to use formal method for verifying a rule base expert system. 

However, our research uses different formal language. We chose 

Z formal language to model our rule-base expert system because 

this language can model a system more formal and free from 

ambiguity [17]. Furthermore, since Z language has schemas, we 

can use these properties to present states. For the verification, 

we use SAL model checker. Our approach has several 

advantages over other approaches: 



• By using Z formal language, we can design our rules as 

predicates in schemas. These predicates are easily defined 

using logical operator supported by Z. 

• Providing this Z specification modelled our expert system, 

we can translate it into another specification in SAL 

language by using Z2SAL. 

• We could input the resulted SAL specification to SAL 

model checker for verification.   

 

III. OUR RULE-BASED EXPERT SYSTEM 

An expert system is "a computer system that emulates, or 

acts in all respects, with the decision-making capabilities of a 

human expert" [18]. Knowledge-based systems as one type of 

expert systems are worthy in cases that are difficult to solve by 

using purely algorithmic or mathematical solutions [19]. One 

technique to represent or store knowledge on a knowledge-based 

system is by representing knowledge from experts as rules, 

which are declarative, in the form of “if antecedent then 

consequent”. The antecedent clause is a test, which evaluate to 

True or False [20].  

Increasing interest in AI with the management of uncertainty 

and evidential reasoning, resulted some methods [21]. One of 

them is Dempster-Shafer theory of evidence. This theory is 

claimed as a promising improvement on traditional approaches 

to decision analysis [22]. 

Our rule-based expert system serves as an expert gives 

recommendation to home medication for mild ingestion diseases 

[23][24]. There are 20 symptoms of these diseases and 6 mild 

digestive diseases, see Table 8 in [24]. A set of rules represent 

relations of these symptoms and mild digestive diseases.  

This expert system uses uncertainty reasoning based on 

Dempster-Shafer. Calculation with Dempster Shafer requires 

probabilities of density functions. This density represents a 

belief value in indications of a sickness. We obtained these 

densities from a pharmacist. Table 9 in [24] shows those 

densities. 

A user does consultations to this system to know what the 

sickness is and medication that will help to give first aid to the 

sickness. This user performs a consultation by entering 

symptoms of his disease. 

 

IV. MODEL CHECKING OUR SYSTEM 

The model checking method is a proper choice when 

compared with methods relying upon simulation, testing and 

deductive reasoning [25]. Verification by model-checking 

techniques is a well-established area of research [26]. 

Proficiency in mathematical disciplines is not necessary 

available to model check specifications [25]. 

Although it has advantages, there are also drawbacks. First, 

it only applies to finite state systems, and second, these cannot 

be so large since it can suffer from state space explosion 

problems [24][26][27]. These are due to the search strategy, 

which uses an exhaustive searching of the state space of a system 

using suitable graph algorithms [24][26]. 

We use SAL model checker to verify our system. To do this, 

we should have a SAL specification of our system. 

SAL is a framework, which is used to change perceptions 

and implementations of model checkers and theorem provers. 

These perceptions and implementations at first were based on 

verification to a calculation of properties or symbolic analysis 

such as abstraction, slicing and composition [28]. SAL combines 

some different tools such as abstraction, program analysis, 

theorem proving and model checking towards a symbolic 

analysis of transition systems [14]. The current version of SAL 

is 3.3 which can be downloaded from [29]. The SAL language 

syntax is given in [14].  

We added six theorems to our SAL specification. This 

specification is the result of translation by Z2SAL. Z2SAL [13] 

is a translator of a Z language specification into a SAL language 

specification [14]. 

A SAL file consists of a SAL module and/ or several SAL 

contexts. The module defines a transition system of Z states [30]. 

The outline of a SAL module is as follows: 

State : MODULE = 

  BEGIN 

 INPUT ... 

 LOCAL ... 

 OUTPUT ... 

 INITIALIZATION [ ... ]  

 TRANSITION [ 

 ... 

  ] 

END 

The SAL context declares types, constants, modules, and 

modules properties [14]. Z2SAL defines several Z mathematical 

tool-kits, which are necessary for the related Z specification, in 

separated but integrated SAL context files. More information 

about Z2SAL is provided in [31]. It includes also a 

downloadable version of this translation tool. 

We have added six theorems to our SAL specification. The 

first three and the last two theorems represent safety properties. 

The first theorem says that it is always the case that the 

unavailability of a symptom indicates there is no infection. The 

second theorem says that it is always the case that the absent 

from C disease shows that there is neither G1, G5, G6, G7, G8, 

nor G9 symptom exists. The third theorem in this classification 

asserts that the same symptom will never exist more than once. 

The five theorem is the opposite of the first theorem. We add 

this theorem to see how SAL model checker generates the 

counterexample. The last theorem says that if a symptom is not 

G1 then in the future that symptom could be G1. 

Safety properties will be proven by using forward 

reachability method in sal-smc, as a default [29]. A safety 

property asserts that nothing bad happens through execution of 

a system [32]. 



The fourth theorem represent liveness property. Liveness 

properties assert that something good eventually happens [32]. 

Our fourth theorem says that it is always the case that the present 

in G1 symptom indicates the infection of either A or C disease. 

 

V. METHOD 

Based on the expert system, we designed a Z specification 

for this system manually. It is emerged now the opposite way; 

to design formal models of systems, model inference is used 

which is combined with expert systems [33]. 

 We declared diseases to be values for a global variable 

Decision. The same also applies to symptoms; they are 

declared values of a global variable, namely TypeS. 

Rules in our expert system that relate symptoms with 

diseases are specified as predicates in our state schema. Each 

rule is presented with a symptom that implies diseases. The state 

schema declares several variables that represent a disease, a 

symptom and densities. As Z2SAL has not yet supported real 

numbers, we declare densities with a type of integer.  

We declare initial values in the initialization schema. We 

include also in this schema the assigned values for densities, 

which are shown on Table 9 in [23]. 

The last schema is an operational schema. In this schema, we 

specify predicates that represent calculations of new densities of 

potential diseases. Another process here is to decide which 

disease is caught based on the calculation. 

This Z specification was translated into the SAL 

specification by using Z2SAL. Then, we presented our theorems 

as explained above.  

Following flow chart on Fig. 1 shows our works. As can be 

seen from Fig. 1, the first process is to design a Z specification 

of our rule-based expert system. We do not represent the expert 

system entirely in our Z specification. It is because our difficulty 

in representing some parts of the system. We designed three 

schemas in our Z specification: a state schema, an initial schema, 

and one operation schema. Our state schema, namely 

ruleBase, represents rules in our rule-based expert system. 

There are 20 rules, which indicates there are 20 symptoms in our 

rule-based expert system. The initial schema specifies initial 

values for the state variables. The operational schema, namely 

advise, shows how to conclude what sickness is somebody 

has based on the symptoms. 

The second process is to translate our Z specification using 

Z2SAL translator. Fortunately, Z2SAL can translate our Z 

specification though there are manual modifications in some 

places. These modifications are discussed further in the next 

section, Result and Discussion.   

After the SAL specification and some mathematical context 

files are generated by Z2SAL, we added some theorems in the 

resulted SAL specification (not in the mathematical context 

files). The explanation to these theorems can be read in other 

parts of this paper. 

 

Fig. 1. Flow chart of our works 

The last process is to model check the SAL specification. We 

use SAL model checker to perform this model checking. Again, 

the discussion on this process can be read in the next section.  

Our result and discussion are given in the following section. 

It begins with the presentation of our Z specification. 

 

VI. RESULT AND DISCUSSION 

We present some of our Z specification as shown here: 

Decision ::= A | B | C | D | E | F | clear 

TypeS ::= G1 | G2 | G3 | G4 | G5 | G6 | G7 | G8 | G9 |G10 | G11 | G12 | G13 | 

G14 | G15 | G16 | G17 | G18 | G19 | G20 | nothing 

The above declarations represent global variables that have 

enumerated values. These Z paragraphs have no box to declare 

free types. ::= symbol stands for a free type definition that has | 

to separate one element with other elements [34]. Decision has 

types of disease, where TypeS has types of symptoms. Thus, 

there are 20 symptoms in our system, G1 to G20. clear means 

there is no disease caught, as well as nothing means there is no 

symptom. A, B, C, D, E and F are names of disease modelled by 

our rule-based Expert System. We define names of disease as 

types for a global variable, Decision, to be able to use the 

variable as a type for other variables declared in schemas. The 

same reason is applied to another global variable, TypeS. 

Our state schema is shown in top left of the next page. There 

are 20 symptoms which each of these is an antecedent of its 

implication of involved diseases. D1 to D20 are measures of 

belief or densities. In our expert system, these numbers are in 

real, but we changed them into integer types that suits the 

translator. However, we changed them back into real number in 

the SAL specification. Variables, which begin with dTheta are 

new densities of several combinations of symptoms. 



decision is used to store the caught disease. By defining a 

schema, we can show a system’s state and behavior of a 

computer system [34]. 

 ruleBase  

Infected: Decision 

decision: ℙDecision 

symptom: TypeS 

D1, D2, D3, D4, D5, D6, D7, D8, D9,D10, D11, D12,  

D13, D14, D15, D16,D17, D18, D19, D20: ℤ 

dTheta1, dTheta2, dTheta31, dTheta32,dTheta33,  

dTheta34, dTheta4, dTheta51,dTheta51, dTheta52,  

dTheta53, dTheta54,dTheta55, dTheta56, dTheta57, dTheta58: ℤ 

 

(symptom = G1 ⇒(Infected = A ∨ Infected = C)) 

(symptom = G2 ⇒(Infected = A)) 

(symptom = G3 ⇒(Infected = A)) 

(symptom = G4 ⇒(Infected = A ∨ Infected = B)) 

(symptom = G5 ⇒(Infected = C ∨ Infected = D ∨ Infected = F)) 

(symptom = G6 ⇒(Infected = C ∨ Infected = D)) 

(symptom = G7 ⇒(Infected = B ∨ Infected = C)) 

(symptom = G8 ⇒(Infected = C)) 

(symptom = G9 ⇒(Infected = B ∨ Infected = C)) 

(symptom = G10 ⇒(Infected = E)) 

(symptom = G11 ⇒(Infected = E)) 

(symptom = G12 ⇒(Infected = E)) 

(symptom = G13 ⇒(Infected = E)) 

(symptom = G14 ⇒(Infected = E)) 

(symptom = G15 ⇒(Infected = A)) 

(symptom = G16 ⇒(Infected = F)) 

(symptom = G17 ⇒(Infected = F)) 

(symptom = G18 ⇒(Infected = B)) 

(symptom = G19 ⇒(Infected = B)) 

(symptom = G20 ⇒(Infected = B)) 
 

It is usual to have two parts separated by a line (in a vertical 

style of schema). The part, which is over the line, is to declare 

variables. In a case it is a state schema, the variables are state 

variables, which can be called in other schemas. Other variable 

is global variable that has been declared in earlier part of our Z 

specification. The part, which under the line, is to define 

predicates of a schema. A predicate is an operation that could 

change variables’ values. It can also constrain variables’ values 

[34]. A set will be defined from the satisfied predicates [34]. 

Therefore, in the predicate part of our state schema, a value 

is defined for Infected. We implemented rules from our 

expert system as implication statements over all symptoms. 

Thus, each symptom relates to one or more sicknesses. 

The initialization schema is shown below. This schema 

relates with post-operations of the state schema as implied by 

declaring the state schema’s name with an apostrophe. It means 

that after the operation of the initialization schema, involved 

state schema's variables will be changed. This schema defines 

first values for all state variables. 

 Initial  

ruleBase′ 

 

Infected′= clear 

symptom′= nothing 

D1′= 9 ∧ D2′= 6 ∧ D3′= 6 ∧ D4′= 6 ∧  D5′= 9  ∧ D6′= 7  

∧ D7′= 8 ∧ D8′= 6 ∧ D9′= 8 ∧  D10′= 9 ∧ D11′= 8 

∧ D12′= 8 ∧  D13′= 9 ∧  D14′= 6 ∧ D15′= 6 ∧ D16′= 7  

∧ D17′= 6 ∧ D18′= 9 ∧ D19′= 9 ∧  D20′= 6 ∧  dTheta1′= 0 

∧ dTheta2 ′= 0 ∧ dTheta31′= 0 ∧ dTheta32′= 0 ∧ dTheta33′= 0  

∧ dTheta34′= 0 ∧  dTheta4′= 0 ∧ dTheta51′= 0 ∧ dTheta52′= 0  

∧ dTheta53′= 0 ∧ dTheta54′= 0 ∧ dTheta55′= 0 ∧ dTheta56′= 0 ∧  

dTheta57′= 0 ∧ dTheta58′= 0 ∧ density′= 0 ∧  decision′ = ∅   
 

We do not give our operational schema, advise, because 

this schema is long enough. In this schema, we define predicates 

representing the calculation of Dempster Shafer method of our 

expert system. It can be read further in [22]. 

Our Z specification could accept a minimum of two 

symptoms and at most of three symptoms to ease the calculation 

of densities compared to our rules that could have more than 

three symptoms. The biggest density means that the sickness is 

recorded on its name. 

We have not added medication for each disease in our Z 

specification due to time limitation. However, we think the 

medication could be added in the initialization schema. 

As mentioned earlier, we have changed the real number into 

integer number, but changed back to real number in the SAL 

specification. It is because Z2SAL does not support real number 

in Z specifications. We change the integer type in the original 

SAL specification into real type. The original SAL specification 

before the manual change is as follows: 

INT : TYPE = [-1..21]; 

LOCAL D1 : INT 

D1' IN {x : REALL | TRUE}; 

We change also multiplication operations into summation 

with the same reason as above. We change the summation back 

into multiplication in the accompanied SAL specification. 

One example of a summation operation in our Z 

specification is as follows: 

dTheta31 = (1 - dTheta1) + (1 - dTheta2) 

The original SAL part of that line is as follows: 

dTheta31 = (1 - dTheta1) + (1 - dTheta2)  

Then we changed it manually into following: 

dTheta31 = (1 - dTheta1) * (1 - dTheta2)  

We also modified several lines in the TRANSITION section, 

which represents advice, as these lines do not match with our Z 

specification. We did all of these changes manually. 



Some parts of our SAL specification is presented here. This 

specification is generated  by Z2SAL. However, we have 

modified some of this SAL specification.  

The original SAL specification consists of 580 lines. Thus, 

we do not put this specification entirely in this paper.  

homeMed : CONTEXT = BEGIN 

REALL : TYPE = [-1..21]; 

Decision : TYPE = DATATYPE 

  … 

END; 

TypeS : TYPE = DATATYPE 

  … 

END; 

State : MODULE = 

  BEGIN                                                           

    … 

    DEFINITION                                                    

      invariant__ = ( 

… 

    INITIALIZATION [ 

        …         

    ] 

    TRANSITION [ 

      advise : 

         …                 

    ] 

  END; 

  … 

END 

We do not provide SAL parts of advise, which is an 

operation schema of our Z specification. Decision about the 

sickness will be calculated based on the symptoms. We specify 

three input variable of symptoms (symptom1? to 

symptom3?) in this paper. Each of these symptoms can be one 

of 20 symptoms and they cannot be the same. For example: 

(symptom1? = G1 => (symptom2? /= G1 AND symptom3? /= G1 AND 
dTheta1 = 1 - D1 AND Infected = A AND decisionSet1_' = set {Decision;} ! 

insert(decisionSet1_', Infected) AND Infected = C AND decisionSet1_' = set 

{Decision;} ! insert(decisionSet1_', Infected))) 

Theorems will be put at the bottom of the above SAL 

specification, between the second last END and the last END. We 

have discussed briefly about our theorems in Section IV.  

The first theorem is as follows: 

Theorem 1. th1: theorem State |- G(NOT(symptom = nothing AND Infected /= 

clear)); 

Other four theorems are as follows: 

Theorem 2. th2: theorem State |-  G(NOT(Infected = C) → (NOT(symptom = 

G1) OR NOT(symptom = G5) OR NOT(symptom = G6) OR NOT(symptom = 

G7) OR NOT(symptom = G8) OR NOT(symptom = G9)));  

Theorem 3. th3: theorem State |-  G(NOT(symptom = G1 AND X(symptom = 

G1))); 

Theorem 4. th4: theorem State |-  G(symptom = G1 → Infected = A OR Infected 

= C); 

Theorem 5. th5: theorem State |-  G(symptom /= nothing AND Infected = clear); 

Theorem 6. th6: theorem State |-  G(symptom = G1 AND X(symptom = G1)); 

They are defined by using LTL (see [35]) with SAL model 

checker notations [14][29]. G means it is applied globally or 

always the case. X means it is happened in the next state. 

The first four and the last theorem are proved as VALID. 

However, the five theorem gives a counterexample because it is 

INVALID. The counterexample is as follows: 

Counterexample for 'th5' located at [Context: homeMed, line(578), column(2)]: 

======================== 

Path 

======================== 

Step 0: 

--- Input Variables (assignments) --- 

symptom1? = G7 

symptom2? = G14 

symptom3? = G7 

--- System Variables (assignments) --- 

Infected = clear 

decision(A) = false 

... 

invariant__ = true 

The fifth theorem does not support the System Variables 

(assignments). A command to SAL model checker is:  

$ sal-smc homeMed 

sal-smc is the command to do symbolic model checking, 

where homeMed is the name of the SAL context. 

Before we leave this section, we summarize our contribution 

as follows: 

• design a Z specification which represents the rule-based 

expert system 

• manual modification in the SAL specification to suit our Z 

specification and rule-based expert system 

• specify theorems and add it to the SAL specification 

 

VII. CONCLUSION 

We have designed the Z specification for some parts of our 

expert system. We have also verified our SAL specification by 

adding six theorems. These theorems were model checked by 

SAL model checker. The results are as the same as the ones that 

we get from manual investigation. Thus, we argue that our Z 

specification along the SAL specification could represent some 

parts of our expert system. This means that we can model our 

expert system using specification languages; Z notation and 

SAL language. This model could show the functionalities of our 

rule-based expert system. The theorems could also represent 

properties of our expert system. Based on the model check’s 

results, some parts of our expert system have been verified. 
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