
Development of Computer Graphics Learning Tool 
Object-Based: A Case Study on Bresenham and 

Midpoint Algorithms 

 

Abstract – This paper presents the development of 
computer graphics learning tool object-based, which in 
this paper is to visualize Bresenham and Midpoint 
Algorithms. The development first introduces the 
implementation of problems by using UML notation. The 
description of the UML consists of the use of Activity 
Diagram, Sequence Diagram, Use-Case Diagram, Class 
Diagram, and State Diagram. Then, implementation 
continues, which is to code a program. The objective of 
developing this Computer Graphics learning tool is to 
ease students for understanding Bresenham and 
Midpoint Algorithms. 

Keywords: Computer Graphics, Bresenham, Midpoint, 
UML. 

 
1 Introduction 

Computer Graphics is a part of computer science that 
relate with drawing and manipulating image digitally [T1 T]. 
This science is composed by some parts; one of them is 
Geometry, which is a science for drawing a surface area.  
 

Computer Graphics has been applied in many aspects 
of human life. One of them is in education and training 
[ T2 T]. In spite of that, notably for learning in a class, many 
algorithms are still presented with text and picture forms 
that cannot be simulated directly by using computer.  
 

Based on those problems, students often feel such a 
hard for deep understanding on functions of those 
algorithms. This is because computer graphics algorithms 
especially Geometry are presented in forms of 
mathematics formula that abstract.  
 

Therefore, this paper presents the development a 
helping tool for visualizing some of computer graphics 
algorithms, in particular are Bresenham and Midpoint 
Algorithms. The objective of this development is to help 
students for easier understanding of those algorithms so 
that can apply them to future development.  
 

In this paper, those algorithms are chosen because both 
of them can be used to draw either line or circle where 
they are one of primitives on computer graphics [ T3 T].  
Furthermore, the task of drawing straight line on a 
graphics screen is a fundamental building block for most 
of computer graphics applications [T4 T].  
 
2 Background Theories 

Following will be presented Bresenham and Midpoint 
Algorithm and lastly is UML. First is Bresenham 
Algorithm.  
 
2.1 Bresenham 

Bresenham is an efficient algorithm to render a line 
with pixels [ T5 T]. The long dimension is incremented pixel 
by pixel, and the fractional slope is accumulated [T6 T]. This 
algorithm is an HalgorithmH to determine where points in an 
n-dimensional Hraster H should be plotted in order to form a 
close approximation to a straight line between two given 
points [ T7 T].  
 

The algorithm is commonly used to draw lines on a 
computer screen. Because of using only integer addition, 
subtraction and Hbit shifting H, the operation of that 
algorithm is very cheap. Moreover, it does not need to 
round off the value of pixel position every time [ T8 T], so it 
can speed up the operation time. A minor extension to the 
original algorithm also deals with drawing circles [ T9 T].  
 

2.1.1 Bresenham Algorithm [ T10 T] & [ T11 T] 

Here is the basic Bresenham Algorithm. If we want to 
draw a line on a raster grid where we restrict the 
allowable slopes of the line to the range 10 ≤≤ m . And 
next, if we restrict the line-drawing routine so that it 
always increments x as it plots, it becomes clear that, 
having plotted a point at (x, y), the routine has a severely 
limited range of options as to where it may put the next 
point on the line: 
• It may plot the point (x+1, y), or:  
• It may plot the point (x+1, y+1).  
 

Maria Ulfah S Ahmad Athaullah M. Rifqi Maarif 

Informatic’s Department, Faculty of Science and Technology 
State Islamic University Yogyakarta 



Therefore, by working in the first positive octant of the 
plane, line drawing becomes a matter of deciding 
possible point between two possibilities at each step. We 
can draw a diagram of the situation, which the plotting 
program finds itself in having plotted T(x, y)T. 
 

 
Figure 1. Bresenham line 

 
The plotted point (x, y) usually will be in error. 

Actually, mathematical point on the line will not be 
addressable on the pixel grid. Therefore, we associate an 
error, ε, with each y ordinate; the real value of y should 
be y + ε. This error will range from -0.5 to just under 
+0.5. 

 
In moving from x to x+1, the value of the true y will be 

increased by an amount equal to the slope of the line, m. 
If we choose to plot (x+1, y) and if the difference 
between this new value and y is less than 0.5, then the 
formula is:  
 y + ε + m < y + 0.5 (1) 
 

Meanwhile, if we choose to plot (x+1, y+1), the total 
error will be minimize between line segment. This 
resulting error can now be written back into ε. Therefore, 
it will allow us to repeat the whole process for the next 
point along the line, at x+2.  
 

The new value of error can adopt one of two possible 
values, depending on what new point is plotted. If (x+1, 
y) is chosen, the new value of error is given by:  
 ε Bnew B ← (y + ε  + m) – y (2) 

 
If (x+1, y+1) is chosen:  
                            ε Bnew B ← (y + ε  + m) – (y + 1) (3) 
 

In algorithm notation, the processes are: 
1. Define two points that will be connected to draw a 

line 
2. Define one of those points, which in left position, as 

origin point, (xB0B, yB0B) and another as end point (xB1B, yB1B) 
3. Compute dx, dy, 2dx and 2dy – 2dx 
4. Compute parameter: p B0B = 2dy - dx 
5. For every xBkB along the line, starts with k = 0, 

- if pk < 0, then the next point is (xBkB+1, yk), and 
p Bk+1 B = p BkB + 2dy 

- otherwise, then the next point is (xBkB + 1, yBkB + 1), 
and p Bk+1B = p BkB + 2dy – 2dx 

6. Repeat from number 5 to define next pixel position, 
until x = xB1B and y = yB1B. 

 

2.2 Midpoint 
 Midpoint Circle Algorithm is also called Bresenham 
Circle Algorithm [ T12 T]. The Midpoint is the middle HpointH 
of a Hline segmentH [ T13 T].  Therefore, it is HequidistantH from 
both endpoints. Its HformulaH in the plane segment, with 
endpoints (xB1 B, yB1 B) and (xB2B, yB2B) is: 

                                
2

,
2

2121 yyxx ++
 (3) 

 
For an n-dimensional space with axes xB1 B, xB2 B, xB3B… xBnB, 

the midpoint of an interval is given by: 

2
,...,

2
,

2
,

2
21231322122111 nn xxxxxxxx ++++

 (4) 

 
Computation to draw circle is started by identifying 

parts of circle by using symmetry property. This is done 
by dividing circle into parts with 45° angle.   Therefore, 
there are eight parts.  
 

The same as Midpoint Algorithm for drawing line, then 
in this phase, there are two pixels that must be chosen. 
They are (x+1, y) or (x+1, y-1).  
 

 

Figure 2. Circle using midpoint algorithm 

 

Next step is to define circle equation and function to 
set determine variable. The formula for circle with centre 
(0, 0) is :  

 f(x, y) = x * x + y + y – r * r = 0 (5) 

 

The function f(x, y) of above formula will have positive 
value if point (x, y) is outside from circle, and otherwise 
if point (x, y) is inside from circle. Whereas determine 
variable function and increment is given by these 
formulas:  

 g(x, y) = (x + 1) * (x + 1) + (y – ½ ) * (y – ½ ) – r * r (6) 

 DeltaG1 = 2x + 3 (7) 

 DeltaG2 = 2x - 2y + 5 (8) 

 

Differ with increment value of straight-line algorithm 
which constant; on circle curve, it is not constant. 
Commonly, polynomial curve order n needs n level 
increment. At original point (xB1 B, yB1B), determine variable 
computation has real parts, so that integer number 



operation cannot be used directly. In practice, this is 
finished by add ¼ value to determine variable. This will 
not interfere changes of number sign, as it operation is 
done by integer, and it needs faster operation. 

 
2.3 UML 

Unified Modeling Language (UML) is a standardized 
general purpose Hmodeling languageH in the field of 
Hsoftware engineering H [ T14 T]. UML includes a set of 
graphical notation techniques to create Habstract models H of 
specific systems. 

 

UML offers a standard way to write a system's 
HblueprintsH, including conceptual components such as 
HactorsH, Hbusiness processes H, system's HcomponentsH, and 
HactivitiesH. As well as concrete things such as 
Hprogramming languageH statements, HdatabaseH schemas, 
and reusable Hsoftware componentsH.  

 

UML help us to develop model from varies forms or 
types of software that is running on different operating 
system and network. Besides that, programmer can 
understand clearly purposes and aims of system design so 
software can be developed by using any programming 
language.  

 

However, because UML is a model of software system 
development based on object so it uses class and 
operation form on basic concept. Therefore, it is suitable 
in programming to use language of object oriented such 
as C, C++, Java, VB and many others.  

 

A model of software designed with UML is developed 
by using diagram and symbol forms to represent elements 
of system. Diagrams that are used are:  

• Use-case Diagram: shows the functionality in terms 
of actors, their goals represented as use cases, and 
any dependencies among those use cases. 

• Class Diagram: describes the structure of a system 
by showing the system's classes, their attributes, and 
the relationships among the classes. 

• State Diagram: is a standardized notation to 
describe many systems, from computer programs to 
business processes. 

• Sequence diagram: shows how Objects 
communicates with each other in terms of a sequence 
of messages. Also indicates the lifespan of objects 
relative to those messages. 

• Collaboration Diagram: are types of activity 
diagram in which the nodes represent interaction 
diagrams.  

• Activity Diagram: represents the business and 
operational step-by-step workflows of components in 
a system. An activity diagram shows the overall flow 
of control. 

• Component Diagram: depicts how a software system 
is split up into components and shows the 
dependencies among these components.  

• Deployment Diagram: serves to model the hardware 
used in system implementations, and the execution 
environments and artifacts deployed on the 
hardware.  

 

Object in software analysis and design is a concept, 
thing, and something to distinguish them from their 
environment. As simply, object like as a car, a human, an 
alarm and something else. 

 

Nevertheless, object can be something abstract that is 
live in such as table, database, event, or system messages. 
The object is introduced by its state or operation. As 
example for a car, it can be recognized by its color, form, 
like wise human by its voice. These features will 
distinguish an object with other objects. 

 

The reasons whether the nowadays development of 
software based on object, first is its scalability, where 
object can be used to draw easier a big and complex 
system. Second is dynamic modeling which can be used 
to model a dynamic and real time system.  

 

UML is a model language that must be used 
simultaneously with methodology of software 
development [T15 T]. This methodology is a guide for 
developing software. Moreover, this system will present   
Unified Software Development Process (USDP). USDP 
is an industry standard software development process that 
is free and generic process for the UML [ T16 T].  

 

Iterations are the key of USDP. Each of iteration 
contains workflows. They are: 

• Requirements: Purpose of this workflow is to collect 
data from clients. UML diagrams that are used are 
Activity Diagram and Use-Case Diagram. 

• Analysis: In this workflow, requirements from 
clients will be defined. Sequence Diagram is used 
here. 

• Design: Purpose of this work is to produce class 
design and its interaction that is class diagram. 

• Implementation: Process that is happened here is to 
translate design into codes of program. 

• Test: This workflow is used to evaluate system 
suitability by analysis, design or user requirement. 

 



3 Methodology 

The development methodology begins with 
requirement workflow to collect data from client. In the 
requirement workflow, activities that are happened are 
illustrated well in Figure 3. The activity diagram is 
created to represent the process to view the line or circle, 
by first input the points or radial. If a user does not key 
any of points or radial, no line or circle is resulted. 

 

 
Figure 3. Activity diagram of system 

 

Based on diagram in Figure 3, actor of the system can 
be defined. Use-case diagram for that actor can be seen as 
in Figure 4. In this system, actor is a user that can be a 
student, lecture or somebody that one to view line or 
circle by using Bresenham or Midpoint Algorithm. This 
use-case defines relationship between system and actor. 
The relationship can be an input from actor to system or 
an output from system to actor [17]. 

 

 

Figure 4. Use case diagram of user 

 

The next process is analysis where data that are 
gathered from previous process will be analysis to bring 
to requirements of client. These requirements are pictured 
out on Sequence Diagram, as follow: 

 
Figure 5. Sequence diagram of system 

 

Class Diagram that is used in this system is Frame class 
and Main class. For more explanation, can be seen in 
Figure 6 and 7 respectively. 

 

 
Figure 6. Class diagram: Frame 

 

 
Figure 7. Class diagram: Main 

 

State diagram is illustrated in Figure 8. This diagram 
consists of two transitions, whether user wants to view 
line by using Bresenham Algorithm and/or if user wants 
to view circle. 

 

 
Figure 8. State diagram of system 

 

In the implementation workflow, the interface is as 
simple as this figure. For both of algorithms, user is 
required to input points and especially for midpoint’ 
circle is accompanied with radial.  

 



 

Figure 9. Interface of system 

 

Some testing has been done to the system. Resulted 
line if user keys inputs as illustrated in Figure 10 is 
presented in Figure 11. 

 

 

Figure 10. Input for drawing line 

 

Resulted line is rendered in pixel grid. The line is 
showed not smooth. This is because size of the pixel is 
defined relatively big. 

 

 
Figure 11. Resulted line 

 

While, if user keys inputs for viewing circle by using 
Midpoint Algorithm, three inputs are keyed. Two of 
parameters are for x and y points of origin, and one 
parameter is for radial of circle, as illustrated in Figure 
12. 

 

 
Figure 12. Input for drawing circle 

 

The circle resulted can be seen in Figure 13. The 
smoothness of circle is not so good, the same with line 
drawing. 

 



 
Figure 13. Resulted circle 

 
4 Conclusions and Future Works 

This paper has discussed the importance of developing 
a helping tool to ease students for understanding of some 
of computer graphics algorithms, which are Bresenham 
and Midpoint Algorithm. However, this system does not 
combine yet error checking for input.  

 

Therefore, in future, it is hoped that more algorithms 
will be visualized and error checking will be 
implemented. Furthermore, the visualization will be 
presented nicely, such as use web-based, pixel grid that 
smooth, more number of pixel, interface that more user 
friendly, user guide, help menu, and many others. 

 
References 
                                                           

                                                                                              

[1] Anonim, Accessed from 
http://id.wikipedia.org/wiki/Grafika_komputer at 3rd of 
July 2009. 

[2] Alfa Ryano, Accessed from 
http://elektroundip2002.files.wordpress.com/2008/02/tug
as-01-grafkom.pdf at 3rd of July 2009. 

[3] Djoni Haryadi Setiabudi, “Kurva bezier dan 
bresenham untuk pembuatan lingkaran”, Jurnal 
Informatika, Vol. 2, No. 2, pp. 51-56, Nov. 2001. 

[4] Koopman, P., “Bresenham line-drawing algorithm”, 
Forth Dimensions, Vol. VIII, No. 6, pp. 12-16. 

[5] Black, P.E., Accessed from 
http://www.itl.nist.gov/div897/sqg/dads/HTML/bresenha
m.html at 3rd of July 2009. 

[6] Black, P.E., Accessed from 
http://www.itl.nist.gov/div897/sqg/dads/HTML/bresenha
m.html at 3rd of July 2009. 

[7] Anonim, Accessed from 
http://en.wikipedia.org/wiki/Bresenham%27s_line_algori
thm at 3rd of July 2009. 

[8] Ariesto Hadi Sutopo, Pengantar grafika komputer, 
Gava Media, Yogyakarta, pp. 49-51, 2002. 

[9] Anonim, Accessed from 
http://en.wikipedia.org/wiki/Bresenham%27s_line_algori
thm at 3rd of July 2009. 

[10] Flanagan, C., Accessed from 
http://www.cs.helsinki.fi/group/goa/mallinnus/lines/brese
nh.html at 3rd of July 2009. 

[11] Ariesto Hadi Sutopo, Pengantar grafika komputer, 
Gava Media, Yogyakarta, pp. 51, 2002. 

[12] Ariesto Hadi Sutopo, Pengantar grafika komputer, 
Gava Media, Yogyakarta, pp. 55, 2002. 

[13] Anonim, Accessed from 
http://en.wikipedia.org/wiki/Midpoint at 3rd of July 
2009. 

[14] Anonim, Accessed from 
http://en.wikipedia.org/wiki/Unified_Modeling_Languag
e at 3rd of July 2009. 

[15] Shofwatul ‘Uyun, et.al., “Sistem pemandu kenaikan 
pangkat dan jabatan dosen berbasis objek (Studi kasus di 
Fakultas Sains dan Teknologi UIN Yogykarta)”, 
Compile: Jurnal Teknologi Komputer, Vol. 2, No. 1, pp. 
71-83, Jan. 2009. 

[16] Anonim, “3C05: Unified software development 
process”, Zuelke Engineering, Accessed from 
http://www.zuelke.com at 3rd of July 2009. 

[17] Fajar Saptono, “Pembuatan perangkat lunak 
SHORGA untuk menentukan jalur terpendek antar kota 
menggunakan algoritma genetika”, Tugas Akhir UII, pp. 
37, 2007. 

 

 
 
 
 
 

http://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
http://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
http://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html
http://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html


                                                                                              
 

 

 

 
 


	Introduction
	Background Theories
	Bresenham
	Bresenham Algorithm [�] & [�]

	Midpoint
	UML

	Methodology
	Conclusions and Future Works
	References

