PENGARUH PENDEKATAN STEM MODEL POE TERHADAP KEMAMPUAN BERPIKIR KRITIS DAN KETERAMPILAN KOMUNIKASI PESERTA DIDIK MELALUI PEMBELAJARAN *ONLINE*

SKRIPSI

untuk memenuhi sebagian persyaratan mencapai derajat sarjana S-1

STATE ISL Disusun oleh:/ERSITY

MUSTAQIMATUL FITRIYAH

NIM. 16670039 T

PROGRAM STUDI PENDIDIKAN KIMIA
FAKULTAS SAINS DAN TEKNOLOGI
UNIVERSITAS ISLAM NEGERI SUNAN KALIJAGA
YOGYAKARTA

2020

KEMENTERIAN AGAMA UNIVERSITAS ISLAM NEGERI SUNAN KALIJAGA FAKULTAS SAINS DAN TEKNOLOGI

Jl. Marsda Adisucipto Telp. (0274) 540971 Fax. (0274) 519739 Yogyakarta 55281

PENGESAHAN TUGAS AKHIR

Nomor: B-1681/Un.02/DST/PP.00.9/07/2020

Tugas Akhir dengan judul : PENGARUH PENDEKATAN STEM MODEL POE TERHADAP KEMAMPUAN

BERPIKIR KRITIS DAN KETERAMPILAN KOMUNIKASI PESERTA DIDIK

MELALUI PEMBELAJARAN ONLINE

yang dipersiapkan dan disusun oleh:

Nama : MUSTAQIMATUL FITRIYAH

Nomor Induk Mahasiswa : 16670039

Telah diujikan pada : Kamis, 23 Juli 2020

Nilai ujian Tugas Akhir : A-

dinyatakan telah diterima oleh Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

TIM UJIAN TUGAS AKHIR

Ketua Sidang

Sidiq Premono SIGNED

Valid ID: 5f191d19e2714

Penguji I

Khamidinal, S.Si., M.Si
SIGNED

Agus Kamaludin, M.Pd.

SIGNED

Penguji II

Valid ID: 5f1e243ecd0c7

Yogyakarta, 23 Juli 2020 UIN Sunan Kalijaga Plt, Dekan Fakultas Sains dan Teknologi Dr. Murtono, M.Si. SIGNED

1/1 11/08/2020

SURAT PERSETUJUAN SKRIPSI/ TUGAS AKHIR

Hal : Surat Persetujuan Skripsi/Tugas Akhir

Lamp :-

Kepada

Yth. Dekan Fakultas Sains dan Teknologi

UIN Sunan Kalijaga Yogyakarta

Di Yogyakarta

Asalamualaikum wr.wb.

Setelah membaca, meneliti, memberikan petunjuk dan mengoreksi serta mengadakan perbaikan seperlunya, maka kami selaku pembimbing berpendapat bahwa skripsi Saudara:

Nama : Mustaqimatul Fitriyah

NIM : 16670039

Judul Skripsi : Pengaruh Pendekatan STEM Model POE Terhadap Kemampuan

Berpikir Kritis Dan Keterampilan Komunikasi Peserta Didik Melalui

Pembelajaran Online

Sudah dapat diajukan kembali kepada Program Studi Pendidikan Kimia Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta sebagai salah satu persyaratan untuk memperoleh gelar Sarjana Strata Satu dalam Pendidikan Sains.

GYAKARTA

Wassalamu'alaikumwr.wb

Yogyakarta, 13 Juli 2020

Pembimbing,

Shidiq Premono, M. Pd

NIP: 19820124000000 1 301

NOTA DINAS KONSULTAN

Hal: Skripsi Saudari Mustaqimatul Fitriyah

Kepada Yth. Dekan Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta di Yogyakarta

Assalamu'alaikum wr.wb.

Setelah membaca, meneliti, memberikan petunjuk dan mengoreksi serta mengadakan perbaikan seperlunya, maka kami selaku konsultan berpendapat bahwa skripsi Saudari:

Nama : Mustaqimatul Fitriyah

NIM : 16670039

Judul skripsi : Pengaruh Pendekatan STEM Model POE Terhadap Kemampuan

Berpikir Kritis Dan Keterampilan Komunikasi Peserta Didik Melalui

Pembelajaran Online

sudah dapat diajukan kembali kepada Program Studi Pendidikan Kimia Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta sebagai salah satu syarat untuk memperoleh gelar Sarjana Strata Satu dalam bidang Pendidikan Kimia.

Demikian yang dapat Kami sampaikan. Atas perhatiannya kami mengucapkan terima kasih.

Wassalamu'alaikum wr.wb.

Yogyakarta, 27 Juli 2020
Konsultan I

STATE ISLAMIC UNIVERSALES

SUNANDA STIPPZASALSO

Khamidinal, S.Si., M.Si.
NIP. 19691104 200003 1 002

NOTA DINAS KONSULTAN

Hal: Skripsi Saudari Mustaqimatul Fitriyah

Kepada Yth. Dekan Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta di Yogyakarta

Assalamu'alaikum wr.wb.

Setelah membaca, meneliti, memberikan petunjuk dan mengoreksi serta mengadakan perbaikan seperlunya, maka kami sel<mark>aku</mark> konsultan berpendapat bahwa skripsi Saudari:

Nama : Mustaqimatul Fitriyah

NIM : 16670039

Judul skripsi : Pengaruh Pendekatan STEM Model POE Terhadap Kemampuan

Berpikir Kritis Dan Keterampilan Komunikasi Peserta Didik Melalui

Pembelajaran Online

sudah dapat diajukan kembali kepada Program Studi Pendidikan Kimia Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta sebagai salah satu syarat untuk memperoleh gelar Sarjana Strata Satu dalam bidang Pendidikan Kimia.

Demikian y<mark>ang dapat Kami</mark> sampaikan. Atas perhatiannya kami mengucapkan terima kasih.

Wassalamu'alaikum wr.wb.

STATE ISLAMIC UNIVE Agus Kamaludin, M.Pd.
SUNAN KALIJA 19820504 200912 1 005
YOGYAKARTA

SURAT PERNYATAAN KEASLIAN SKRIPSI

Saya yang bertanda tangan di bawah ini:

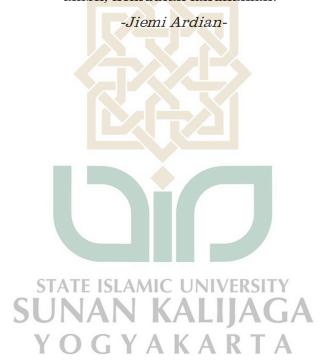
Nama : Mustaqimatul Fitriyah

NIM : 16670039

Program Studi : Pendidikan Kimia Fakultas : Sains dan Teknologi

Menyatakan bahwa skripsi saya yang berjudul "Pengaruh Pendekatan STEM Model POE Terhadap Kemampuan Berpikir Kritis Dan Keterampilan Komunikasi Peserta Didik Melalui Pembelajaran *Online*" merupakan hasil penelitian saya sendiri, tidak terdapat karya yang pernah diajukan untuk memperoleh gelar kesarjanaan di suatu perguruan tinggi, dan sepanjang sepengetahuan saya, tidak terdapat karya atau pendapat yang pernah ditulis atau diterbitkan orang lain, kecuali yang secara tertulis diacu dalam naskah ini dan disebutkan dalam daftar pustaka.

Yogyakarta, 13 Juli 2020


STATE ISLAMIC UNIVERSULES, Y SUNAN KALIJAMETERAL TARREL TO THE STATE OF THE STATE O

Mustaqimatul Fitriyah NIM 16670039

HALAMAN MOTTO

"Life is never flat."

"Memikirkan solusi tidak sama dengan melakukan solusi. Pilihlah konsekuensi mana yang mau kau ambil. kemudian lakukanlah."

HALAMAN PERSEMBAHAN

Skripsi ini, aku persembahkan kepada: Ibu, bapak, kakak, adik, dan keluarga tercinta Serta

Almamaterku Program Studi Pendidikan Kimia Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

KATA PENGANTAR

Puji Syukur penulis haturkan kepada Allah SWT, Tuhan semesta alam yang tidak pernah lelah memberikan rahmat dan rahim-Nya kepada setiap makhluk, sehingga skripsi dengan judul "Pengaruh Pendekatan STEM Model POE Terhadap Kemampuan Berpikir **Kritis** Dan Keterampilan Komunikasi Peserta Didik Melalui Pembelajaran Online" dapat terselesaikan. Shalawat serta salam semoga senantiasa tercurah kepada Baginda Rasulullah Muhammad SAW yang telah membawa umatnya kepada dunia yang penuh berkah.

Tidak lupa penulis ucapkan terima kasih kepada para pihak yang telah membantu secara moril maupun materil demi terselesainya skripsi ini. Tanpa adanya bantuan dan kerja sama dari berbagai pihak, mustahil skripsi ini dapat terselesaikan dengan baik. Oleh karena itu pada kesempatan ini, penulis menyampaikan ucapan terima kasih kepada:

- Ibu Dr. Khurul Wardati, M. Si., selaku Dekan Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta yang telah memberikan izin kepada penulis untuk menyusun skripsi.
- Bapak Karmanto, M.Sc. selaku Ketua Program Studi Pendidikan Kimia Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta yang telah memberikan

- waktu dan kesempatan kepada penulis dalam menyelesaikan skripsi.
- Bapak Shidiq Premono, M.Pd., selaku Dosen Pembimbing yang telah memberikan waktu, kesempatan, dan bimbingannya kepada penulis untuk menyelesaikan skripsi ini.
- 4. Bapak Agus Kamaludin, M.Pd., dan Ibu Laily Nailul Muna, M.Sc. selaku dosen validator yang telah membantu dan memberikan masukan untuk instrumen penelitian dalam skripsi ini.
- Bapak Tri Giharto, S.Pd. selaku kepala SMAN 2
 Banguntapan yang telah memberikan izin untuk melakukan penelitian.
- 6. Ibu Masiyati, S.Pd., selaku Guru Kimia kelas X SMAN 2
 Banguntapan yang telah berkenan memberikan arahan
 dan waktu kepada penulis untuk mengambil data,
 sehingga terselesaikannya skripsi ini.
- 7. Peserta didik kelas X MIPA 2 dan X MIPA 1 SMAN 2 Banguntapan yang telah berperan serta mengikuti pembelajaran selama penelitian ini.
- Kedua orang tuaku, Bapak Shokhibbunnajat dan Ibu Rohyatun yang telah memberikan kasih sayang, dukungan, motivasi, dan semangat kepada penulis hingga saat ini.

- Kakak dan adikku tersayang, Isnaeni Widiastuti, Rifqy Mungalim, Nailis Syarifah, dan Ulil Husna yang telah memberikan dukungan baik secara langsung maupun tidak langsung.
- 10. Sahabat-sahabatku, Friska Putri Normayanti, Hasniarridha La Aziza Syaefudin, Meli Apriyanti, dan Esthi Dwi Wijayanti yang selalu memberikan masukan dan motivasi.
- 11. Keluarga besar Pendidikan Kimia 2016 yang telah menemani, mendukung dan memotivasi penulis dalam melaksanakan studi.
- 12. Seluruh pihak yang terlibat secara langsung maupun tak langsung yang tidak dapat penulis sebut satu per satu.

Penulis menyadari sepenuhnya bahwa skripsi ini jauh dari kesempurnaan karena keterbatasan kemampuan dan pengetahuan penulis. Oleh sebab itu, penulis mengharapkan kritik dan saran yang mendukung dan membangun demi perbaikan dari skripsi ini. Akhir kata, penulis berharap agar skripsi ini dapat berguna dan bermanfaat bagi kita semua. Aamiin.

Yogyakarta, Juni 2020

Penulis,

Ansh.

Mustaqimatul Fitriya

DAFTAR ISI

HALAMAN JUDUL	i
HALAMAN PENGESAHAN	ii
SURAT PERSETUJUAN SKRIPSI/TUGAS AKHIR	iii
NOTA DINAS KONSULTAN	iv
SURAT PERNYATAAN KEASLIAN SKRIPSI	vi
HALAMAN MOTTO	vii
HALAMAN PERSEMBAHAN	viii
KATA PENGANTAR	ix
DAFTAR ISI	Xii
DAFTAR TABEL	xiv
DAFTAR GAMBAR	xv
DAFTAR LAMPIRAN	xvi
INTISARI	xvii
BAB I PENDAHULUAN	1
A. Latar Belakang	1
B. Identifikasi Masalah	5
C. Batasan Masalah	6
D. Rumusan Masalah	6
E. Tujuan Penelitian	7
F. Manfast Penelitian	7
BAB II KAJIAN PUSTAKA	9
A. Kajian Teori	9
1. Pembelajaran Berbasis Online	9
Pembelajaran Kimia	11
3. Pendekatan STEM (Sains Technology	
Engineering and Mathematics)	14
Engineering and Mathematics)	
Observation Explanation)	18
5. Konsep mol dan Stoikiometri	22
6. Keterampilan Komunikasi	31
Keterampilan Komunikasi Berpikir Kritis	45
B. Kajian Penelitian Yang Relevan	50
C. Kerangka Pikir	52
D. Hipotesis	55
BAB III METODOLOGI PENELITIAN	56
A Jenis dan Desain Penelitian	56

B. Tempat dan Waktu Penelitian	57
C. Populasi dan sampel penelitian	58
1. Populasi Penelitian	58
2. Sampel Penelitian	58
Teknik Pengambilan Sampel	58
D. Variabel Penelitian	59
E. Definisi Operasional Variabel Penelitian	59
F. Teknik Dan Instrumen Pengumpulan Data	61
Teknik Pengumpulan Data	61
2. Instrumen Penelitian	62
G. Validitas dan Reliabilitas Instrumen	64
Validitas Instrumen	64
Reliabilitas Instrumen	67
H. Teknik Analisis Data	68
1. Uji Normalitas	68
2. Uji Homogenitas	69
3. Uji Hipotesis	69
Uji Hipotesis BAB IV HASIL DAN PEMBAHASAN	72
A. Hasil Penelitian	72
1. Deskripsi Pengambilan Sampel	72
Pelaksanaan Pembelajaran	73
3. Data Uji Coba Instrumen	74
B. Analisis Data	77
1. Analisis Data Tes	77
Analisis Data Angket	82
C. Pembahasan	90
BAB V KESIMPULAN	109
A. Kesimpulang aga a a a a a a a a a a a a a a a a	109
B. Implikasi	109
A. Kesimpulane ISLAMIC UNIVERSITY B. Implikasi C. Keterbatasan Peneliti D. Saran	109
D. Saran	110
DAFTAR PUSTAKA. V. A. K. A. R. T. A	112
LAMPIRAN	118

DAFTAR TABEL

Tabel 2.1	Tahap Pelaksanaan model Pembelajaran	
	POE	21
	Desain Penelitian	57
		63
	-	65
	Kiteria Tingkat Kesukaran	67
	Kriteria Uji Reliabilitas	68
	Waktu Pelaksanaan pembelajaran kelas eksperimen dan kontrol	74
Tabel 4. 2	Hasil Uji Daya Pembeda dan Tingkat	
	Kesukaran	76
Tabel 4. 3	Hasil Pretest kelas eksperimen dan kelas kontrol	78
Tabal 4 4		70
Tabel 4. 4	Uji Normalitas kelas eksperimen dan kontrol	78
Tabel 4.5	Uji Homogenitas Kelas Eksperimen dan	
	kontrol	78
Tabel 4. 6	Hasil Posttest kelas eksperimen dan kelas	
	kontrol	79
	Uji Normalitas kelas eksperimen dan kelas	
	kontrol	80
	Uji Homogenitas Posttest	80
	Hasil uji T Posttest	82
	Data Angket Kemampuan Berpikir Kritis	83
	Uji Nosmalitas Angket Berpikir Kritis	83
	Uji Homogenitas angket kemampuan	0.5
		84
Tabel 4. 18	berpikir kritis Hasil Uji AMann AWhitney Angket	04
	kemampuan berpikir kritis	86
Tabel 4 14	Data Angket Keterampilan Komunikasi	86
	Uji Normalitas Kelas Eksperimen Dan	•••
14001 1. 11	Kelas Kontrol	87
Tabel 4, 16	Uji Homogenitas angket keterampilan	
	komunikasi	88
Tabel 4, 17	Hasil IIIi Mann Whitney Anglest	
	Keterampilan Komunikasi	∕øte Wii

DAFTAR GAMBAR

Gambar 2. 1	. Kerangka	Pikir		
Gambar 4. 1	Pemberian	Video	Animasi	Kelas
Gambar 4. 2		n Pambalaisean		
Cambai 4. 2		n		
Gambar 4.3	•			
Gambar 4. 4	Suasana I	Pembelajaran	online	di kelas
	kontrol			
		_		
CTATI	EIGLAAA	IIC UNIV	/EDCIT	V
SUN	AN	KALI	IA(ıA

YOGYAKARTA

DAFTAR LAMPIRAN

Lampiran Lampiran		Rencana Pelaksanaan Pembelajaran Lembar Kerja Peserta Didik	119 151
Lampiran		Kisi-kisi Angket Kemampuan Berpikir	
		Kritis	158
Lampiran	4.	Lembar Angket Kemampuan Berpikir	
		Kritis	159
Lampiran	5.	Kisi-kisi Angket Keterampilan	
	-	Komunikasi	161
Lampiran	6.	Lembar Angket Keterampilan	
	-	Komunikasi	162
Lamniran	7	Kisi-kisi Soal Tes Kemampuan Berpikir	
Dumphum		Kritis	164
Lamnican	8	Soal Tes Kemampuan Berpikir Kritis	165
		Kunci Jawaban Soal Tes Kemampuan	103
Lamphan		Berpikir Kritis	167
Lamnican	10	Hasil Test Kemampuan Berpikir Kritis	171
-		Hasil Angket Kemampuan Berpikir	
Lamphan	• • •	Kritis	172
Lamnican	12	Hasil Angket Keterampilan Komunikasi	175
Lampiran		Hasil Uji Statistika Nilai Kimia	177
Lampiran		Kisi-kisi Soal Uji coba	181
-		Soal Uji coba	182
Lampiran		Kunci Jawaban Soal Uji coba	184
		Hasil Analisis Validitas dan Reliabilitas	104
Lamphan	11.	Soal Tes Kemampuan Berpikir Kritis	188
I amsiTa	10	Hasil Analisis Validitas dan Reliabilitas	100
-		Aneket Kemanpuan Berpikir Kritis	189
		Hasil Analisis Validitas dan Reliabilitas	107
V		Angkét Keterampilan Komunikasi	190
Lampiran	20.	Surat Keterangan Validasi	194
		Surat Penelitian	196
		Surat Seminar Proposal	197
		Curriculum Vitae	198

INTISARI

PENGARUH PENDEKATAN STEM MODEL POE TERHADAP KEMAMPUAN BERPIKIR KRITIS DAN KETERAMPILAN KOMUNIKASI PESERTA DIDIK MELALUI PEMBELAJARAN ONLINE

Oleh: <u>Mustaqimatul Fitriyah</u> 16670039

Pendidikan 4.0 sebagai respon terhadap perkembangan industri 4.0 menuntut manusia untuk menguasai teknologi digital pada proses pembelajaran, salah satunya yaitu pembelajaran berbasis online. Pembelajaran online pada saat ini diterapkan sebagai usaha untuk menekan penyebaran Coronavirus Disease (CoVid-19) yang dilaksanakan dengan aplikasi menggunakan jaringan internet. Penelitian ini bertujuan untuk mengkaji pengaruh pendekatan STEM model POE terhadap kemampuan berpikir kritis dan keterampilan komunikasi peserta didik melalui pembelajaran online.

Jenis penelitian adalah kuasi eksperimen. Sampel penelitian adalah kelas X MIPA 1 dan X MIPA 2 di SMAN 2 Banguntapan. Teknik pengambilan sampel adalah simple random sampling. Instrumen yang digunakan dalam penelitian ini yaitu instrumen tes dan non tes. Instrumen tes digunakan untuk mengukur kemampuan berpikir kritis, sedangkan instrumen non tes menggunakan angket kemampuan berpikir kritis dan keterampilan komunikasi. Teknik analisis data hasil tes menggunakan uji statistik Independent Sample T Test, sedangkan hasil non tes menggunakan uji statistik nonparametric Mann-Whitney.

Hasil analisis menunjukkan bahwa ada pengaruh pendekatan STEM model POE terhadap kemampuan berpikir kritis dan keterampilan komunikasi peserta didik melalui pembelajaran *online*. Hasil ini dibuktikan dengan diperolehnya nilai sig. (2-tailed) < 0,05 pada kedua uji statistik. Hasil uji statistik kemampuan berpikir kritis dengan

instrumen tes sebesar 0,001; sedangkan non tes sebesar 0,025. Uji statistik instrumen non tes keterampilan komunikasi sebesar 0,049.

Kata Kunci: STEM, POE, Kemampuan Berpikir Kritis, Keterampilan komunikasi

BAB I PENDAHULUAN

A. Latar Belakang

Pendidikan 4.0 merupakan suatu respon terhadap revolusi industri 4.0 perkembangan khususnya Indonesia. Manusia dituntut untuk beradaptasi dengan zaman dan menguasai teknologi digital dalam proses pembelajaran (cyber system) dan mampu membuat pembelajaran berlangsung terus-menerus tanpa batas ruang dan waktu (Gulo, 2019). Salah satu contohnya yaitu pembelajaran berbasis *online*. Menurut Muntahanah (2013:10), pembelajaran online dapat meningkatkan kepekaan peserta didik terhadap perkembangan iptek yang sedang terjadi. Hal ini diperkuat oleh Firman & Sari (2020: 84) yang mengemukakan bahwa pembelajaran online pada saat ini diterapkan sebagai usaha untuk menekan penyebaran Coronavirus Disease (CoVid-19) yang dilaksanakan dengan aplikasi dan layanan kelas virtual menggunakan jaringan internet. Namun demikian, menurut Budiaman (2010: 59) pembelajaran *online* tidak dapat dilakukan di setiap sekolah. Tidak semua sekolah memiliki fasilitas sarana pembelajaran secara lengkap. Selain itu. menurut Firman dan Sari (2020: 85) sangat sedikit, sehingga keterlibatan pendidik tidak menunjukkan pembelajaran bermakna. Peserta didik juga

kesulitan dalam memahami materi yang diberikan secara *online*. Hal ini dibutuhkan inovasi pembelajaran untuk menunjang peserta didik agar tetap melakukan pembelajaran secara mendalam dan bermakna.

Salah satu inovasi agar pembelajaran bermakna Li (2014:1)yaitu pembelajaran menurut mengintegrasikan Science, Technology, Engineering, dan Mathematics (STEM). Keterkaitan antara sains dan teknologi maupun ilmu lain tidak dapat dipisahkan dalam pembelajaran sains. Pembelajaran dengan menggunakan pendekatan STEM sebagai bentuk upaya mempersiapkan pelajar yang tangguh untuk menghadapi tantangan pendidikan dan pekerjaan di era globalisasi. Namun, (2014) meskipun seorang pendidik menurut White tetapi STEM. akan menggunakan mereka tidak mengintegrasikan komponen yang ada dalam STEM. Pendidik masih berperan sebagai pendidik sains, bukan sebagai pendidik STEM karena masih belum mengintegrasikan berbagai disiplin ilmu.

Pembelajaran dengan pendekatan **STEM** dalam pendidikan sangat dipengaruhi oleh model pembelajaran digunakan pendidik. Salah model yang satu pembelajaran yang cocok diintegrasikan dengan pendekatan STEM yaitu Predict- Observe- Explain (POE). Aspek- aspek yang terkandung dalam model POE

yang telah ini dengan aturan pemerintah sesuai ditetapkan. Berkaitan dengan pembelajaran kimia, sesuai Permendiknas No. 23 Tahun 2006 dengan tentang Standar Kompetensi Lulus (SKL) dijelaskan bahwa ilmu dikembangkan melalui eksperimen untuk kimia dapat mencari jawaban apa, mengapa, bagaimana, dan gejala khususnya yang berkaitan dengan energetika, struktur, dan sifat zat. Amanat tersebut dapat diterapkan dalam model pembelajaran POE dengan cara menerapkan konsep-konsep kimia untuk menyelesaikan masalah dalam kehidupan sehari-hari dan teknologi. Akan tetapi, menurut Wiguna (2018: 37) model pembelajaran POE masih jarang digunakan oleh pendidik. Selain terbatasnya waktu, pendidik juga membutuhkan kemauan motivasi yang tinggi untuk menggunakan model tersebut. Hal ini menjadikan pendidik tetap bertahan menggunakan model pembelajaran konvensional, sehingga proses pembelajaran menjadi kurang efektif.

Proses pembelajaran yang kurang efektif menjadikan tingkat pemahaman peserta didik terhadap suatu materi pembelajaran akan berkurang. Materi pembelajaran kimia yang dimaksud salah satunya adalah stoikiometri. Menurut Zakiyah, dkk (2018: 126), materi stoikiometri merupakan materi yang sulit. Hal ini karena banyaknya aspek yang harus dikuasai peserta didik dan interpretasi

masalah dari bahasa atau kata menjadi persamaan matematis. Perlu adanya model pembelajaran yang dapat menjadikan peserta didik memahami konsep materi pembelajaran.

Menurut Wiguna dkk (2018: 38) model pembelajaran POE memungkinkan peserta didik lebih leluasa belajar secara mandiri dan dapat menguasai kemampuan serta mengolah pikirannya, mengaplikasikan teori ke perbuatan dan keterampilan, sehingga menghasilkan sesuatu yang baru sebagai produk inovasi pikirannya. Selain itu, menurut Erviana (2016:88-89) penerapan model POE memberikan pengaruh positif kepada peserta didik agar kritis dalam mengikuti proses menjadi aktif dan pembelajaran yang berlangsung. Peserta didik diharuskan mempertimbangkan untuk apakah sumber dapat tidak, mendefinisikan dipercaya atau istilah, dan menyimpulkan. Akan tetapi, menurut (Fatmawati, 2014:921) dalam pembelajaran peserta didik masih kesulitan dalam memahami masalah, merencanakan penyelesaian, dan kesulitan membuat kesimpulan serta jawaban. Peserta didik juga belum memahami asal usul suatu prinsip sehingga tidak dapat memecahkan masalah. Hal ini berarti peserta didik belum bekerja sesuai pedoman berpikir kritis.

Penggunaan model pembelajaran POE juga dapat melatih peserta didik untuk memberikan penjelasan secara sederhana dan berkomunikasi, baik secara lisan maupun tulisan. Kemampuan berkomunikasi sangat dari berkomunikasi adalah penting karena tujuan menyampaikan maksud agar dapat penerima memahaminya (Erviana, 2016: 75). Akan tetapi, menurut Hidayat (2015: 17) keterampilan komunikasi interaksi peserta didik dengan teman atau pendidiknya masih sangat rendah. Hal ini dikarenakan pemberian materi pelajaran oleh pendidik masih dalam bentuk Peserta didik tidak ditekankan ceramah. untuk mengemukakan pendapat dan hanya mendengarkan pendidik. Hanya sedikit yang bertanya dan mencari informasi dari sumber lain.

B. Identifikasi Masalah UNIVERSITY

- Tidak semua sekolah memiliki fasilitas pembelajaran lengkap dan keterlibatan pendidik yang kurang maksimal dalam pembelajaran secara online
- 2. Pendidik masih berperan sebagai pendidik sains, bukan sebagai pendidik STEM
- 3. Pendidik terbatas waktu dan kurang memahami penerapan model POE.

- 4. Banyaknya aspek materi stoikiometri yang harus dikuasai peserta didik dan interpretasi masalah dari bahasa menjadi persamaan matematis.
- 5. Peserta didik tidak dilatih berfikir secara kritis dalam proses pembelajaran.
- 6. Peserta didik tidak ditekankan untuk mengemukakan pendapat dan hanya mendengarkan pendidik.

C. Batasan Masalah

Penelitian ini akan difokuskan pada pengaruh pendekatan STEM model POE dalam menuntun peserta didik berpikir kritis dan memiliki keterampilan komunikasi. Materi pembelajaran dibatasi pada materi stoikiometri sebagai salah satu materi yang memuat karakteristik STEM.

D. Rumusan Masalah MIC UNIVERSITY

Berdasarkan batasan masalah yang telah dipaparkan, rumusan masalah dalam penelitian ini adalah:

- Adakah pengaruh pendekatan STEM model POE terhadap kemampuan berpikir kritis peserta didik melalui pembelajaran *online*?
- 2. Adakah pengaruh pendekatan STEM model POE terhadap keterampilan komunikasi peserta didik melalui pembelajaran *online*?

E. Tujuan Penelitian

Tujuan yang hendak dicapai dalam penelitian ini adalah sebagai berikut:

- Mengkaji pengaruh pendekatan STEM model POE terhadap kemampuan berpikir kritis peserta didik melalui pembelajaran *online*
- Mengkaji pengaruh pendekatan STEM model POE terhadap keterampilan komunikasi peserta didik melalui pembelajaran online

F. Manfaat Penelitian

Manfaat yang diperoleh dari penelitian ini adalah sebagai berikut:

1. Manfaat teoritis

Hasil penelitian ini diharapkan dapat mengembangkan wawasan ilmu dalam dunia pendidikan bahwa terdapat pendekatan dan model pembelajaran yang dapat meningkatkan kemampuan dan keterampilan peserta didik, yaitu pendekatan STEM model POE.

2. Manfaat praktis

a. Bagi pendidik

Pendidik mendapatkan informasi tentang pengaruh pendekatan STEM model pembelajaran POE untuk memberikan pengalaman belajar peserta didik yang lebih bervariasi.

b. Bagi peserta didik

Peserta didik dapat meningkatkan kemampuan berpikir kritis dan keterampilan komunikasi.

c. Bagi peneliti

Peneliti dapat menambah pengetahuan dan pengalaman sebagai calon pendidik dalam menerapkan pendekatan STEM model pembelajaran POE.

BAB V KESIMPULAN

A. Kesimpulan

Berdasarkan hasil penelitian dan pembahasan, maka dapat disimpulkan bahwa:

- Ada pengaruh pendekatan STEM model POE terhadap kemampuan berpikir kritis peserta didik. Hal ini dibuktikan dari hasil uji statistik instrumen tes dan non tes berturut-turut sebesar 0,001 dan 0,025.
- Ada pengaruh pendekatan STEM model POE terhadap keterampilan komunikasi peserta didik. Hal ini dibuktikan dari hasil uji statistik sebesar 0,049.

B. Implikasi

Hasil penelitian menunjukkan bahwa ada pengaruh pendekatan STEM model POE terhadap kemampuan berpikir kritis dan keterampilan komunikasi peserta didik melalui pembelajaran *online*.

C. Keterbatasan Peneliti

Penelitian ini telah diupayakan agar dapat dilakukan dengan sebaik-baiknya. Namun demikian, tetap disadari bahwa penelitian masih memiliki beberapa keterbatasan.

Keterbatasan penelitian ini adalah sebagai berikut:

- Penelitian hanya dilakukan pada satu tempat, yaitu di SMAN 2 Banguntapan. Hal ini hanya berlaku pada sampel yang diteliti.
- 2. Keterbatasan sumber dan teori yang dipakai dalam rujukan penelitian ini.

D. Saran

Berdasarkan hasil penelitian yang diperoleh, maka saran yang diberikan peneliti adalah sebagai berikut:

1. Bagi pendidik

Pendekatan STEM model POE menjadi pilihan alternatif dalam pembelajaran online untuk kemampuan berpikir meningkatkan kritis dan keterampilan komunikasi peserta didik. Hal ini karena alternatif pembelajaran online ini dapat melatih peserta didik dalam pemecahan masalah dan mengomunikasikannya menggunakan gaya bahasa yang mudah dipahami.

2. Bagi peneliti selanjutnya

Penelitian pengaruh pendekatan STEM model POE diharapkan dapat dilakukan penelitian lebih lanjut dengan sampel yang luas. Kemudian, alternatif pembelajaran *online* tersebut dapat dipertimbangkan sebagai salah satu pendekatan dan model

pembelajaran yang berkualitas untuk menunjang kemampuan berpikir kritis dan keterampilan komunikasi peserta didik.

DAFTAR PUSTAKA

- Arifin, Johar. 2017. SPSS untuk penelitian dan skripsi. Jakarta: Elex Media Komputindo.
- Arikuntoro, S. 2012. *Dasar-dasar evaluasi pendidikan (2nd Ed)*. Jakarta: Bumi Aksara.
- Basri, Hasan. 2017. Penerapan model pembelajaran role playing untuk meningkatkan hasil belajar Bahasa Indonesia peserta didik kelas v sdn 032 Kualu kecamatan tambang. *Jurnal Pendidikan Dan Pengajaran Program Studi Pendidikan Pendidik Sekolah Dasar*, Vol 1(1).
- Budiaman, 2010. Analisis faktor-faktor kesulitan penerapan e-learning dalam pembelajaran IPS. *Jurnal Sejarah Lontar*, vol.7 (2).
- Bybee, Rodger. 2013. The case for STEM education challenges and opportunities. Arlington: National Science Teacher Association.
- Chang, Raymond. 2005. *Kimia dasar: konsep-konsep inti jilid 1*. Jakarta: Erlangga.
- Darmadi, Hamid. 2014. *Kemampuan dasar mengajar*. Bandung: Alfabeta.
- Daryanto. 2014. *Pendekatan pembelajaran saintifik kurikulum 2013*. Yogyakarta: Gava Media.
- Depdiknas. 2006. Permendiknas nomor 23 tahun 2006 tentang standar kompetensi kelulusan (SKL). Jakarta: Depdiknas.

- Elder, Linda Dan Paul, Richard. 2013. 30 day to better thinking and better living through critical thinking: a guide for improving every aspect of your life revised and expanded. Pearson Education.
- Erviana, Lucia. 2016. Pengaruh model pembelajaran POE (predict observe explain) terhadap keterampilan berpikir kritis peserta didik kelas xii pada materi fotosintesis di man 2 palembang. *Skripsi*.
- Fatmawati, Herlinda., dkk. Analisis berpikir kritis peserta didik dalam pemecahan masalah matematika berdasarkan pola pada pokok bahasan persamaan kuadrat. *Jurnal Elektronik Pembelajaran Matematika*, Vol 2(9).
- Fisher, Alec. 2009. *Berpikir Kritis: Sebuah Pengantar*. Jakarta: Erlangga.
- Fiani,Indah Fajar, *dkk*. 2017. Kendala pendidik dalam menerapkan model pembelajaran pada pembelajaran tematik berdasarkan kurikulum 2013 di SD negeri 2 kota banda aceh. *Jurnal Ilmiah Pendidikan Pendidik Sekolah Dasar*, vol.2 (1).
- Fitriana, Anggi Wulan. 2018. Pengaruhu model pembelajaran POE (Prediict-Observe-Explain) berbantu metode eksperimen terhadap pemahaman konsep fisika siswa kelas XI IPA. *Skripsi*. Lampung: Universitas Raden Intan.
- Gintings, Abdorrakhman. 2010. Esensi praktis: belajar dan pembelajaran. Bandung: Humaniora.
- Gulo, Soziduhu. 2019. Tantangan pendidikan di era revolusi 4.0. *Kompasiana Bidang Edukasi*, 3 juni 2019.

- Hidayat, Adityawarman. 2015. Pengaruh model pembelajaran berbasis masalah dengan pendekatan pemecahan masalah terhadap kemampuan komunikasi matematis peserta didik. *Jurnal Obsesi*, Volume 1(1).
- Honey, Margaret., dkk. 2014. STEM integration in k-12 education. National Academy of Science.
- Hsiao, Hsien- Sheng., dkk. 2017. A five stage predictionobservation- explanation inquiry based learning model to improve student's learning performance in science course. EUURASIA Journal of MATHEMATICS Science And Technology Education.
- Husamah., dkk. 2018. Belajar dan pembelajaran. Malang: Universitas Muhammadiyah Malang.
- Iriantara, Yosal. 2014. *Komunikasi pembelajaran*. Bandung: Simbiosa Rekatama Media.
- Ismail, Fajri. 2018. *Statistika untuk penelitian pendidikan dan ilmu-ilmu sosial*. Jakarta: Prenadamedia Group.
- Kemendikbud. 2013. *Pendekatan dan strategi pembelajaran*. Jakarta TE ISLAMIC UNIVERSITY
- Li, Yeping. 2014. International journal of STEM education- a platform to promote stem education and research worldwide. *Li International Journal of STEM Education*, vol 1(1).
- Maolani, A. Rukaesih. 2015. *Metodologi penelitian pendidikan*. Jakarta: Rajagrafindo Persada.
- Mariyaningsih, Nining dan Mistina Hidayati. 2018. Bukan kelas biasa: teori dan praktik berbagai model dan metode pembelajaran menerapkan inovasi

- *pembelajaran di kelas-kelas inspiratif.* Surakarta: Oase Group.
- Muhson, Ali. 2012. *Panduan analisis statistika dengan spss*. Yogyakarta: Fakultas Ekonomi UNY.
- Mumtahanah, Arniatur Nur. 2013. Aplikasi sistem pembelajaran *online* dengan pemanfaatan situs jejaring sosial *facebook* pada sekolah menengah pertama. *Skripsi*. Surakarta: UMS.
- Musfiqon & Nurdyansyah. 2015. *Pendekatan pembelajaran saintifik*. Sidoarjo: Nizamia Learning Group.
- Naim, Ngainun. 2011. *Dasar- dasar komunikasi pendidikan*. Yogyakarta: Ar Ruzz Media.
- Pane, Ayu Novitasari. 2019. Pengaruh penerapan model pembelajaran Predict observe explain (POE) terhadap keterampilan proses sains siswa SMA. *Skripsi*. Lampung: Unila.
- Payadnya, I Putu Ade Andre. Panduan penelitian eksperimen beserta analisis statistik dengan spss edisi 1. Yogyakarta: Deepublish.
- Petrucci, Ralph H. 1985. Kimia dasar prinsip dan terapan modern edisi keempat jilid 2. Jakarta: Erlangga.
- Prasetyawati, Henny. 2019. Pembelajaran di era industri 4.0. *Jawa Pos*. (23 Februari 2020)
- Prawiradilaga, Dewi Salma. 2013. *Mozaik teknologi pendidikan: e-learning*. Jakarta: Prenadamedia Group.
- Pendidikan: E-Learning. Jakarta: Prenadamedia Group.

- Rusman. 2010. *Model- model pembelajaran*. Jakarta: Raja Grafinso Persada.
- Setiawan, Veri dan Istiqomah. 2018. Penerapan model pembelajaran discovery learning untuk meningkatkan minat dan prestasi belajar. *Prosiding Seminar Nasional Etnomatnesia*.
- Sugiyono. 2011. *Metode penelitian kuantitatif, kualitatif, dan r&d*. Bandung: Alfabeta
- _____. 2013. *Metode penelitian pendekatan kuantitatif, kualitatif, dan r&d.* Bandung: Alfabeta.
- Sukmadinata, N.S. 2013. *Metodologi penelitian pendidikan* (9th ed.). Bandung: Remaja Rosdakarya.
- Sulakhudin. 2019. kimia dasar: konsep dan aplikasi dalam ilmu tanah. Yogyakarta: Deepublish.
- Supriyadi. 2013. *Strategi belajar mengajar*. Yogyakarta: Jaya Ilmu.
- Suyanti. 2010. *Strategi pembelajaran kimia*. Yogyakarta: Graha Ilmu.
- Suyono Dan Hariyanto. 2011. *Belajar dan pembelajaran*. Bandung: Remaja Rosdakarya.
- White, David W. 2014. What is stem education and why is it important?. Florida Association of Teacher Educators Journal, Vol 1(14).
- Widoyoko, Eko Putro. 2012. *Teknik penyusunan instrumen penelitian*. Yogyakarta: Pustaka Pelajar.
- Wiguna, Cipta Suhud., dkk. Tt. Pengaruh model pembelajaran poe terhadap pemahaman konsep dan

kemampuan berpikir kreatif peserta didik. *Jurnal Pendidikan Geografi*.

Zakiyah, dkk. 2018. Analisis dampak kesulitan peserta didik pada materi stoikiometri terhadap hasil belajar termokimia. *Educhemia (Jurnal Kimia Dan Pendidikan*), vol 1(1).

Lampiran 1. Rencana Pelaksanaan Pembelajaran

RENCANA PELAKSANAAN PEMBELAJARAN

A. Kompetensi inti

	tensi mu			
KI.3	Memahami, menerapkan, menganalisis dan			
	mengevaluasi pengetahuan faktual, konseptual,			
	prosedural, dan meta kognitif pada tingkat teknis,			
	spesifik, detail, dan kompleks berdasarkan rasa			
	ingin tahunya tentang ilmu pengetahuan, teknologi,			
	seni, b <mark>udaya, dan humaniora</mark> dengan wawasan			
	kemanusiaan, kebangsaan, kenegaraan, dan			
	peradaban terkait penyebab fenomena dan kejadian,			
	serta menerapkan pengetahuan pada bidang kajian			
	yang spesifik sesuai dengan bakat dan minatnya			
	untuk memecahkan masalah			
KI.4	Menunjukkan keterampilan menalar, mengolah, dan			
	menyaji secara: efektif, kreatif, produktif, kritis,			
	mandiri, kolaboratif, komunikatif, dan solutif,			
	dalam ranah konk <mark>re</mark> t dan abstrak terkait dengan			
	pengembangan dari yang dipelajarinya di sekolah,			
	serta mampu menggunakan metode sesuai dengan			
	kaidah keilmuan			

B. Kompetensi Dasar dan Indikator Pencapaian

Kompetensi | A N | I/A | II A C A

	Kompetensi Dasar		Indikator Pencapaian	
	VOCVAK	A D Kompetensi		
3.10.	Menerapkan hukum- hukum dasar kimia, konsep massa molekul relatif, persamaan kimia, konsep mol, dan	3.10.1	Memahami perbedaan antara massa atom relatif (Ar) dan massa molekul relatif (Mr)	
	kadar zat untuk menyelesaikan perhitungan kimia	3.10.2	Menghitung massa atom relatif (Ar) dan massa molekul relatif (Mr)	

Kompetensi Dasar		Ind	ikator Pencapaian
			Kompetensi
		3.10.3	Mengonversikan
			jumlah mol dengan
			jumlah partikel,
			massa, dan volume
			zat, serta molaritas
		3.10.4	Menerapkan
			penggunaan konsep
			mol untuk
			menyelesaikan
			perhitungan kimia
4.10	Menganalisis data hasil	4.10.1	Menyajikan
	percobaan		penyelesaian
	menggunakan hukum-		penentuan massa
	hukum dasar kuantitatif		atom relatif dan
			massa molekul relatif
		4.10.2	Menganalisis data
			percobaan yang
			berkaitan dengan
			persamaan kimia dan
			stoikiometri

C. Tujuan Pembelajaran

Setelah mengikuti proses pembelajaran, peserta didik diharapkan dapat:

- 1. Memahami perbedaan antara massa atom relatif (Ar) dan massa molekul relatif (Mr) | VERSITY
- 2. Menghitung massa atom relatif (Ar) dan massa molekul relatif (Mr)
- 3. Mengonversikan jumlah mol dengan jumlah partikel, massa, dan volume zat, serta molaritas
- 4. Menerapkan penggunaan konsep mol untuk menyelesaikan perhitungan kimia
- 5. Menyajikan penyelesaian penentuan massa atom relatif dan massa molekul relatif
- 6. Menganalisis data percobaan yang berkaitan dengan persamaan kimia dan stoikiometri

D. Materi Pembelajaran

- 1. Faktual
 - a. Konsep mol
 - b. Stoikiometri
- 2. Konseptual
 - a. Massa atom relatif dan massa molekul relatif
 - b. Hubungan mol dengan jumlah partikel, massa, volume molar, dan molaritas
 - c. Penerapan konsep mol untuk perhitungan kimia dalam kehidupan sehari-hari
- 3. Prosedural
 - a. Cara menyelesaikan perhitungan kimia kaitannya dengan konsep mol

KONSEP MOL

1. MASSA ATOM RELATIF (Ar) dan MASSA

MOLEKUL RELATIF (Mr)

a. Massa atom relatif (Ar)

Mengukur massa adalah kegiatan membandingkan massa suatu benda terhadap benda lain, dimana massa benda pembanding biasa disebut dengan massa standar. Dalam menentukan massa atom, sebagai standar massa atom adalah massa 1 atom karbon-12 (atom karbon yang memiliki massa 12 sma). Jadi, Massa atom relatif (Ar) adalah perbandingan massa rata-rata satu atom suatu unsur terhadap $\frac{1}{12}$ massa atom

C-12 atau 1 sma (satuan massa atom), yang dirumuskan:

$$Ar X = \frac{massa\ rata - rata\ atom X}{\frac{1}{12}\ x\ massa\ 1\ atom\ C - 12}$$

Contoh soal:

Massa rata-rata 1 atom unsur X adalah 6,64 x 10²³ gram dan massa 1 atom C-12 adalah 1,99 x 10²³ gram. Berapa massa atom relatif (Ar) dari unsur X tersebut?

Penyelesaian:

Diketahui: massa rata-rata atom $X=6,64 \times 10^{23}$ gram Massa 1 atom C-12 = 1,99 x 10^{23} gram

Jawab:
$$Ar X = \frac{massa rata - rata atom X}{\frac{1}{12} \times massa 1 \text{ atom C-12}}$$

$$ArX = \frac{6,64x10^{23}}{\frac{1}{12}x1,99x10^{23}} = 40$$

Jadi, massa atom relatif unsur X adalah 40.

Untuk menentukan Ar unsur yang berada di alam dalam bentuk isotop-isotop digunakan rumus berikut:

$$Ar = (\% x \text{ massa isotop } 1) + (\% x \text{ massa isotop } 2) +$$

Contoh soal:

Isotop tembaga di alam terdiri atas 20% isotop Cu-65 dan 80% isotop Cu-63. Berapa massa atom relatif tembaga?

Ar Cu =
$$(\% x Cu 65) + (\% x Cu 63)$$

Ar Cu = $\frac{20}{100} x 65 + \frac{80}{100} x 63 = 63,4$

Jadi, massa atom relatif Cu sebesar 63,4.

b. Massa molekul relatif (Mr)

Molekul merupakan gabungan dari dua atom atau lebih. Oleh karena itu, massa molekul relatif ditentukan oleh massa-massa atom penyusunnya, yang merupakan jumlah dari massa seluruh penyusun molekul tersebut. Seperti halnya massa atom relatif, maka massa molekul juga merupakan perbandingan massa rata-rata 1 molekul atau satuan rumus zat relatif dibandingkan terhadap $\frac{1}{12}$

kali massa atom C-12 atau dirumuskan dengan:

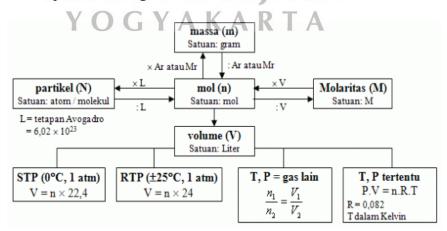
$$Mr AxBy = \frac{massa rata - rata \ 1 \ molekul \ AxBy}{\frac{1}{12} \ x \ massa \ 1 \ atom \ C - 12}$$

$$Mr AxBy = \frac{x atom A + y atom B}{\frac{1}{12} \times 12}$$

Sehingga dapat disederhanakan menjadi:

$$\mathbf{Mr} \ \mathbf{A_x} \mathbf{B_v} = (\mathbf{x} \ \mathbf{Ar} \ \mathbf{A} + \mathbf{y} \ \mathbf{Ar} \ \mathbf{B})$$

Contoh Soal


Berapakah Mr dari H_2O dan $CO(NH_2)_2$? (Ar H=1; O=16; C=12; N=14)

Mr H₂O =
$$(2 \times Ar H) + (1 \times Ar O)$$

= $(2 \times 1) + (1 \times 16)$
= 18

2. HUBUNGAN MOL DENGAN MASSA, JUMLAH PARTIKEL, VOLUME MOLAR, dan KEMOLARAN (MOLARITAS)

a. Mol

Mol merupakan satuan yang menunjukkan ukuran jumlah partikel yang ada dalam suatu zat tersebut sama banyaknya dengan jumlah atom yang terkandung dalam 12 gram atom C-12. Dalam perhitungan kimia, mol dapat dicari dengan rumus:

b. Hubungan Mol Dengan Jumlah Partikel

Menurut Avogadro, dalam satu mol zat (atom, molekul, atau ion) mengandung 6,02 x 10²³ partikel. Bilangan **6,02 x 10²³** disebut dengan bilangan Avogadro, dan diberi notasi "L". Hubungan mol dengan jumlah partikel dapat dituliskan sebagai berikut:

$$n = \frac{x}{L}$$

Dengan:

n= jumlah mol

x= jumlah partikel zat (atom/molekul/ion)

L= tetapan Avogadro (6,02 x 10²³)

Dari rumus tersebut, maka diperoleh bahwa:

$$1 \text{ mol} = 6,02 \times 10^{23} \text{ partikel}$$

Misalnya;

1 mol H_2O = 6,02 x 10^{23} molekul 1 mol Fe = 6,02 x 10^{23} atom

2 mol Na = $\frac{2}{10^{23}}$ x 6,02 x 10^{23} atom = 12,04 x 10^{23} atom

Contoh soal:

- 1. Tentukan jumlah ion PO₄ ³⁻ dari 1 mol Ca₃(PO₄)₂! **Penyelesaian:** MIC UNIVERSITY
- Kita mengetahui bahwa 1 mol atom/senyawa/ion adalah 6,02 x 10²³ partikel.

1 mol $Ca_3(PO_4)_2 = 6.02 \times 10^{23}$ molekul

Dalam senyawa Ca₃(PO₄)₂ mengandung 2 ion PO₄ ³-, sehingga

jumlah ion $PO_4^{3-} = 2 \times 6,02 \times 10^{23}$ molekul = 12,04 x 10²³ ion PO_4^{3}

2. Berapakah jumlah atom Na yang terdapat dalam 0,2 mol Na?

Penyelesaian:

$$n = \frac{x}{L}$$

$$x= n x L$$

= 0,2 mol x 6,02 x 10^{23}
= 1,204 x 10^{23} atom
Jadi, jumlah atom Na sebanyak **1,204 x 10^{23} atom**

3. Berapa jumlah mol O_2 yang terdapat dalam 3,01 x 10^{22} molekul O_2 ?

Penyelesaian:

$$n = \frac{x}{L}$$

$$n = \frac{3,01 \times 10^{22}}{6,02 \times 10^{23}} = 0,05 \text{ mol}$$

c. Hubungan Mol Dengan Massa

Hubungan mol dengan massa suatu atom atau massa molekul suatu senyawa dapat dituliskan dengan:

$$n = \frac{massa}{Ar}$$
 atau $n = \frac{massa}{Mr}$

Dengan:

n = jumlah mol

m = massa zat

Ar = massa atom relative

Mr = massa molekul relative

STATE ISLAMIC UNIVERSITY

Contoh soal:

1. Hitunglah massa dari 0,3 mol H₂SO₄! (Ar H=1;

S=32; O=16) A K A R T A Penyelesaian:

Mr
$$H_2SO_4$$
 = $(2xH) + (1xS) + (4xO)$
= $(2x1) + (1x32) + (4x16)$
= $2 + 32 + 64$
= 98

$$n = \frac{massa}{Mr}$$
$$0,3 = \frac{massa}{98}$$

2. Seorang analis kimia sedang melakukan penelitian mengenai uang logam yang berasal dari bahan perak (Ag). Apabila perak tersebut memiliki massa sebesar 2.160 mg, berapa jumlah partikel yang terkandung dalam uang logam tersebut? (Ar Ag= 108 dan bilangan Ayogadro 6,02 x 10²³)

Penyelesaian:

Diketahui : massa Ag =
$$2.160 \text{ mg} = 2,16 \text{ gram}$$

Ar Ag = 108
= 6.02×10^{23}

 $L = 6.02 \times 10^{23}$ Ditanya: jumlah partikel Ag?

(1) mencari jumlah partikel menggunakan rumus n= $\frac{x}{L}$, sedangkan mol (n) dapat dicari dengan rumus n=

 $\frac{massa}{Mr}$ (karena yang diketahui dalam soal adalah massa dan Ar). Kemudian gunakan persamaan mol untuk menyelesaikan soal ini.

Mol = mol
STA
$$x$$
E I massa IC UNIVERSITY
SUL x Mr KALIJAGA
Y $\frac{x}{6,02x10^{23}}$ = $\frac{2,16}{108}$ KARTA

$$\frac{2,16}{108}x6,02x10^{23}$$

$$x = 0,1204 \times 10^{23}$$
= 0,1204 x 10²³ partikel
Jadi, jumlah partikel atom Ag adalah 1,204 x 10²² partikel.

d. Hubungan Mol Dengan Volume Molar

1) Keadaan Standar (0°C; 1 atm)

Menurut Avogadro, "Pada suhu dan tekanan yang sama, gas-gas bervolume sama mengandung jumlah molekul yang sama." Jadi, volume gas tidak bergantung pada jenisnya, tetapi bergantung pada jumlah mol, suhu, dan tekanan pengukuran.

Volume molar adalah volume 1 mol zat. Volume setiap gas pada keadaan standar (STP/ Standard Temperature and Pressure) adalah tekanan suatu gas pada 1 atm dan suhu 0°C. Nilai volume dari keadaan STP adalah 22,4 L. Hubungan mol dengan volume pada keadaan standar (0°C; 1 atm) dapat dituliskan sebagai berikut:

$$n = \frac{v}{22,4}$$

Dengan:

n= jumlah mol

v= volume zat (L)

contoh soal

berapa volume 0,2 mol gas oksigen (O₂) pada keadaan STP?

Penyelesaian:

$$\begin{array}{l}
n = \frac{v}{22,4} \\
\text{SV= n x 22,4} \\
\text{V= 0,2 mol x 22,4} \\
= 4,48 \text{ L}
\end{array}$$

$$\begin{array}{l}
\text{KALIJAGA} \\
\text{A KARTA}$$

Jadi, volume 0.2 mol gas oksigen pada keadaan STP adalah 4.48~L

2) Keadaan Ruang (25°C; 1 atm atau RTP/Room Temperature and Pressure)

Kondisi pengukuran gas pad suhu 25°C; 1 atm disebut dengan keadaan kamar dan dinyatakan dengan keadaan RTP (Room Temperature and

Pressure). Hubungan mol dengan volume pada keadaan kamar/ruang dapat dituliskan:

$$n = \frac{V}{24}$$

Dengan:

n= jumlah mol

V = volume (L)

Contoh soal:

Berapa volume gas metana (CH₄) yang memiliki massa 8 gram jika diukur pada keadaan kamar!

(Ar C= 12; H=1)Penyelesaian:

$$\frac{massa}{Mr} = \frac{V}{24}$$

$$\frac{8}{16} = \frac{V}{24}$$

V = 12L

Jadi, volume gas metana yang diukur pada keadaan kamar adalah 12 L.

3) Keadaan Dengan Suhu Dan Tekanan Tertentu Pada keadaan selain STP (0°C; 1 atm), volume gas ideal mengikuti persamaan umum gas ideal.

$$PV = nRT$$

Dengan: P= tekanan (atm) (**1 atm= 760 mmHg**)

V= volume zat (L)

n= jumlah mol

R= tetapan gas $(0.082 \text{ L.atm.mol}^{-1}.\text{K}^{-1})$

T= Suhu mutlak (K)

Contoh soal 2

Berapakah volume dari 2 mol gas CO2 Pada suhu 27°C; 3 atm?

 $(R = 0.082 \text{ L.atm.mol}^{-1}.\text{K}^{-1})$

Penyelesaian:

Diketahui: n= 2 mol

 $T = 27 \, ^{\circ}\text{C} + 273 = 300 \, \text{K}$

P= 3 atm
Ditanya: V ?
Jawab :
$$PV = nRT$$

$$v = \frac{nRT}{P}$$

$$v = \frac{2x0,082x300}{3} = 16,4 \text{ L}$$

4) Pada suhu dan tekanan tertentu, volume gas berbanding lurus dengan jumlah molnya.

Persamaan ini dapat dituliskan sebagai berikut:

$$\frac{n_1}{V_1} = \frac{n_2}{V_2}$$

Contoh soal

Pada suhu dan tekanan tertentu, 10 liter gas karbon dioksida (CO₂) memiliki massa 5 gram. Apabila diukur pada suhu dan tekanan yang sama, berapa massa dari 15 liter gas amonia (NH₃) ? (Ar C= 12;

Penyelesaian:

Diketahui: $V CO_2 = 10 L$

Massa $CO_2 = 5$ gram

 $V NH_3 = 15 L$

$$Mr CO_2 = (12+2.16) = 44$$

STATMr NH₃= (14+3,1)= 17 ERSITY
Ditanya: massa NH₃?
Jawab:

- (1) perlu diingat bahwa ada hubungan mol dengan massa. Dari soal, kita dapat mencari mol CO₂ dengan rumus $n = \frac{massa}{Mr}$; maka dapat dituliskan mol CO₂ adalah $n = \frac{5}{4A} = 0,113$ mol.
- (2) Kemudian masukkan mol CO₂ ke rumus $\frac{n_1}{V} = \frac{n_2}{V}$, sehingga dapat dituliskan:

$$\frac{0.113}{10} = \frac{n}{15};$$

$$n = \frac{0.113x15}{10} = 0.17 \,\text{mol}$$

Dari perhitungan di atas, maka didapatkan mol NH_3 sebesar 0,17 mol.

(3) yang dicari adalah massa, sehingga harus menggunakan hubungan massa dengan mol; yaitu

$$n = \frac{massa}{Mr}$$
; kemudian masukkan yang sudah diketahui

 $0.17 = \frac{massa}{17}$; dan massa yang didapatkan sebesar 2,89 gram.

Jadi, massa NH₃ pada keadaan yang sama adalah 2,89 gram.

e. Hubungan Mol Dengan Molaritas Larutan (Konsentrasi)

Larutan merupakan campuran homogen yang terdiri dari pelarut dan zat terlarut. Larutan gula mengandung gula sebagai zat terlarutnya, dan air sebagai zat pelarutnya. Banyak sedikitnya zat terlarut menentukan kepekatan larutan tersebut. Kepekatan larutan disebut dengan molaritas larutan. Jika zat yang terlarut banyak, maka larutan disebut larutan pekat, dan jika zat terlarut sedikit, maka disebut larutan encer. Molaritas dapat diartikan sebagai banyaknya mol zat terlarut dalam 1L larutan.

$$M = \frac{n}{V}$$

Sebelumnya, kita telah mempelajari beberapa hubungan mol dengan massa. Jumlah partikel, dan volume molar. Apabila mol tersebut disubtitusikan dengan massa, maka akan menjadi:

$$M = \frac{Mr}{V}$$
; Sehingga menjadi $M = \frac{massa}{Mr} \times \frac{1000}{V(mL)}$

Dengan:

n= jumlah mol

M= kemolaran (M)

V = volume (L)

Mr= massa molekul relatif

Contoh soal

1. Berapa molaritas larutan 0,5 mol HCl yang terdapat dalam 2 L larutan?

Penyelesaian:

Diketahui: n= 0,5 mol

$$V=2L$$

Ditanya: M?

Jawab:
$$M = \frac{n}{V}$$
; $M = \frac{0.5}{2} = 0.25$ M

2. Sebanyak 2,3 gram kristal NaOH(Mr= 40) akan dilarutkan dalam 250 mL air. Berapa konsentrasi larutan NaOH yang terbentuk?

Diketahui: massa = 2,3 gram

Volume =
$$250 \text{ mL}$$

Mr NaOH= 40 Ditanya: M? AMIC UNIVERSITY

Jawab:
$$M = \frac{massa}{Mr} \times \frac{1000}{V(mL)}$$

$$2.3 \quad 1000$$

$$M = \frac{2,3}{40} x \frac{1000}{250}$$

M = 0.23 M

Jadi, konsentrasi/molaritas dari NaOH sebesar 0,23 M.

STOIKIOMETRI REAKSI

Prinsip stoikiometri umum untuk menemukan mol, massa, dan volume zat yang direaksikan dan dihasilkan:

1. Perbandingan koefisien adalah perbandingan jumlah mol dalam suatu reaksi

 $\frac{\text{mol } A}{\text{mol } B} = \frac{\text{koefisien } A}{\text{koefisien } B}$

2. Segala satuan ukuran zat harus dikonversikan ke dalam mol

A. STOIKIOMETRI SEDERHANA

Dengan melihat hubungan mol dengan besaran lain, persamaan reaksi juga memberikan informasi tentang besaran lain seperti massa, volume, konsentrasi, dan jumlah partikel yang terlibat dalam reaksi. Langkah-langkah perhitungan reaksi sederhana adalah:

- Menyetarakan reaksi
- Menentukan jumlah mol zat yang diketahui
- Mencari jumlah mol zat yang ditanyakan melalui perbandingan koefisien
- Menghitung besaran yang ditanyakan

Contoh 1

LPG merupakan bahan bakar kompor gas yang mengandung sebagian besar gas metana (CH₄). Jika 4 gram gas metana dibakar sempurna dengan oksigen, akan menghasilkan gas karbon dioksida dan uap air. Tentukan massa oksigen yang bereaksi dan massa gas karbon dioksida yang dihasilkan! (Ar C=12; O=16; H=1)

Persamaan reaksi:

$$CH_{4(g)} + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(g)}$$
 (belum setara)

Penyelesaian:

Diketahui: massa CH₄= 4 gram

 $Mr CH_4 = 16$

Persamaan reaksi: $CH_{4(g)} + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(g)}$

Ditanya: massa O₂ dan CO₂?

Jawab:

Langkah 1. menyetarakan persamaan reaksi

$$CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(g)}$$

Langkah 2. menentukan perbandingan jumlah mol Perbandingan mol= perbandingan jumlah molekul= perbandingan koefisien reaksi

$$CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(g)}$$
 Perbandingan mol 1 : 2 1 : 2

Langkah 3. menghitung jumlah mol CH₄ (Karena yang diketahui dalam soal dan yang bisa dihitung adalah CH₄) Rumus yang ada kaitannya dengan massa dan Mr adalah hubungan mol dengan massa.

$$n = \frac{massa}{Mr}$$

$$n = \frac{4}{16} = 0,25 \,\text{mol}$$

Langkah 4. jumlah mol O2 yang bereaksi

$$\frac{mol_{CH_4}}{mol_{O_2}} = \frac{koefisien_{CH_4}}{koefisien_{O_2}}$$

$$\frac{0,25}{mol_{O_2}} = \frac{1}{2}$$
Mol O₂ = 0,25 x 2
$$= 0.5 \text{ mol}$$

= 0.5 molUntuk menghitung Massa O_2 yang bereaksi, gunakan rumus

$$n = \frac{massa}{Mr}$$
; sehingga

Massa = n x Mr

= 0.5 mol x 32

= 16 gram

Langkah 5. jumlah mol CO₂ yang dihasilkan

$$\frac{mol_{CH_4}}{mol_{CO_2}} = \frac{koefisien_{CH_4}}{koefisien_{CO_2}}$$

$$\frac{0,25}{mol_{CO_2}} = \frac{1}{1}$$

Mol CO₂ yang dihasilkan adalah 0,25 mol

Untuk menghitung Massa CO2 yang bereaksi, gunakan

rumus
$$n = \frac{massa}{Mr}$$
; sehingga

 $Massa = n \times Mr$

= 0.25 mol x 44

= 11 gram

Jadi, massa oksigen yang bereaksi adalah 16 gram dan massa karbon dioksida hasil reaksi adalah 11 gram.

Contoh 2

Sebanyak 2,7 gram aluminium direaksikan dengan asam klorida menurut reaksi:

$$2Al_{(s)} + 6HCl_{(aq)} \longrightarrow 2AlCl_{3(aq)} + 3H_{2(g)}$$

Hitung banyaknya volume gas H2 yang dihasilkan dalam keadaan standar (STP)!

Langkah 1. Tentukan jumlah mol zat yang diketahui

$$nAl = \frac{massa}{Ar} = \frac{2,7}{27} = 0,1mol$$

Langkah 2. Mencari jumlah mol yang ditanyakan melalui

perbandingan koefisien
$$nH_2 = \frac{koef(H_2)}{koef(Al)} \times molAl = \frac{3}{2} \times 0.1 = 0.15 mol$$

Langkah 3. Menghitung besaran yang ditanyakan

Volume H₂ pada keadaan standar

 $V = n \times 22,4 = 0,15 \text{ mol } \times 22,4 = 3,36 \text{ L}$

Jadi, volume gas hidrogen yang terbentuk pada keadaan standar sebanyak 3,36 L.

B. PEREAKSI PEMBATAS

Pereaksi pembatas merupakan pereaksi yang habis sebelum pereaksi lain habis bereaksi. Pereaksi yang masih tersisa adalah pereaksi yang hasil perbandingannya lebih banyak. Pereaksi pembatas menentukan jumlah zat hasil reaksi. Dalam reaksi kimia, belum tentu jumlah pereaksi yang ditambahkan sesuai dengan perbandingan koefisiennya. Dengan demikian, pereaksi pembatas menjadi penentu besarnya zat hasil reaksi.

Cara menentukan pereaksi pembatas adalah:

- 1) Persamaan kimia yang terjadi telah disetarakan. Jika belum, harus disetarakan terlebih dahulu
- 2) Tentukan jumlah mol masing-masing pereaksi sesuai yang diketahui dalam soal
- 3) Jumlah mol masing-masing pereaksi yang telah ditentukan dibagi dengan koefisiennya
 - Harga hasil bagi yang lebih kecil merupakan pereaksi pembatas
 - Jika hasil bagi sama, maka kedua pereaksi habis bereaksi
 - Nilai yang lebih kecil merupakan pereaksi pembatas. Dalam pereaksi pembatas, dikenal dengan susunan M-R-S. (Mula-mula; Reaksi; Seimbang).
 - Mula-mula merupakan jumlah mol awal yang diketahui.F ISLAMIC UNIVERSITY
 - Reaksi merupakan jumlah mol yang bereaksi. Pada tahap ini, merupakan penentu mana yang menjadi pereaksi pembatas. Adanya koefisien sangat berpengaruh dalam tahap ini.
 - Seimbang merupakan keadaan seimbang dimana mula-mula dikurangi reaksi (M - R) pada pereaksi, dan (M + R) pada hasil reaksi.

Contoh:

Sebanyak 8,1 gram aluminium direaksikan dengan 300 ml HCl 1 M menurut reaksi: $2Al_{(s)}+6HCl_{(aq)} \rightarrow 2AlCl_{3(aq)}+3H_{2(g)}$

Tentukan

- a. pereaksi pembatas dan massa sisa zat pereaksi! (Ar Al= 27; H=1; Cl= 35,5)
- b. volume gas H₂ pada keadaan standar

Langkah 1. Tentukan jumlah mol yang diketahui

$$nAl = \frac{massa}{Ar} = \frac{8,1}{27} = 0,3mol$$

$$nHCl = MxV = 1x0,3 = 0,3mol$$

Langkah 2. Mencari pereaksi pembatas (perbandingan mol terkecil).

Perbandingan mol terkecil=
$$\frac{mol}{koefisien}$$

Perbandingan mol Al=
$$\frac{0.3}{2}$$
 = 0.15 mol

Perbandingan mol HCl=
$$\frac{0.3}{6}$$
 = 0.05 mol

Mol terkecil adalah HCl.

Jadi, Pereaksi pembatas: HCl (HCl habis bereaksi)

Atau jika dituliskan menjadi:

(R dicari dengan rumus hasil perbandingan koefisien x koefisien.

Hasil perbandingan koefisien terkecil adalah 0,05 (mol HCl), sehingga

- R pada A1 (koef A1 adalah 2) = 0,05 x 2= 0,1 mol
- R pada HCl (koef HCl adalah 6)= 0,05 x 6= 0,3 mol
- R pada AlCl₃ (Koef AlCl₃ adalah 2)= 0,05 x 2= 0,1 mol
- R pada H_2 (koef H_2 adalah 3)= 0,05 x 3= 0,15 mol

Massa sisa zat pereaksi (Al)=

$$n = \frac{massa}{Ar}$$
$$0, 2 = \frac{massa}{27}$$

Massa = 0.2x27 = 5.4 gram

Volume gas H₂ pada keadaan STP adalah

Mol H₂ yang terbentuk 0,15 mol (dilihat dari S atau seimbang)

Hubungan mol dengan volume standar (STP) adalah $n = \frac{V}{22.4}$

Sehingga volume yang dihasilkan sebesar 0,15 mol x 22,4= 3,36L

E. Metode Pembelajaran

	Kelas Eksperimen	Kelas kontrol
Pendekatan	STEM	Saintifik
Model	POE	Discovery
Pembelajaran		Learning

F. Media dan Sumber Belajar

- 1. Media
 - a. Video pembelajaran
- 2. Sumber belajar
 - a. Modul
 - b. Ningsih, Sri Rahayu., dkk. 2013. Kimia SMA/MA Kelas X. Jakarta: Bumi Aksara.
 - c. Internet

G. Kegiatan Pembelajaran AKARTA

1. Kelas Eksperimen

Pertemuan 1 (120 menit)

(Pretest 40 menit)

KEGIATAN		DESKRIPSI	WAKTU
Pendahuluan		Pendidik memberikan salam pembuka	15 menit
	2. P	Pendidik mengecek kehadiran peserta didik melalui WhatsApp poom	

KEGIATAN	DESKRIPSI	WAKTU
	Pendidik memberikan apersepsi	
	dengan menanyakan materi sebelumnya, yaitu mengenai persamaan kimia 4. Pendidik memberikan motivasi kepada peserta didik "kita sering menggunakan satuan jumlah dalam kehidupan sehari- hari. Misalnya ketika membeli gula pasir di warung sebanyak 1kg, minyak goreng 1L, satu lusin sendok. Sama halnya dengan kejadian tersebut, ilmu kimia juga memiliki satuan, yaitu mol." 5. Pendidik menyampaikan tujuan pembelajaran, yaitu peserta didik dapat menentukan massa atom relative (Ar) dan massa molekul	
	relative (Mr) suatu senyawa	
	6. Pendidik membagi LKPD di Whats App room	
Inti	 Predict peserta didik melakukan prediksi yang ada di LKPD Peserta didik memberikan prediksi berdasarkan pengetahuan awal yang dimiliki Observe 	55 menit
SUN	Peserta didik mengamati tabel periodik unsur untuk melihat massa	
YO	 Peserta didik melakukan kajian literatur dari buku (Science) dan internet (Technology) Peserta didik merumuskan cara penyelesaian masalah yang 	
	disajikan (Engineering) Peserta didik melakukan perhitungan untuk menjawab masalah yang disajikan (Mathematics)	
	 Peserta didik membandingkan hasil pengamatan dengan prediksi 	

KEGIATAN	DESKRIPSI	WAKTU
	 Peserta didik melakukan analisis terhadap prediksi dan hasil 	
	pengamatan beserta alasannya 3. Explain	
	Satu atau dua peserta didik	
	mempresentasikan hasil temuannya kepada teman-teman yang lain	
	• Peserta didik lain memberikan	
	tanggapan terhadap jawaban dari peserta didik yang presentasi	
Penutup		10 menit
	1. Pendidik memberi informasi	
	kepada peserta didik bahwa materi	
	selanjutnya yaitu mol serta hubungan mol dengan massa,	
	jumlah partikel, dan volume molar	
	2. Pendidik mengingatkan peserta	
	didik untuk mengumpulkan hasil	
	temuan melalui Whats App 3. Pendidik menutup pembelajaran	
_	dengan salam.	

Pertemuan 2 (120 menit)

KEGIATAN	DESKRIPSI	WAKTU
Pendahuluan		15 menit
STAT	- 1. Pendidik memberikan salam TV	
SUN	pembuka 2. Pendidik mengecek kehadiran	
YO	peserta didik melalui <i>WhatsApp</i> room	
	3. Pendidik memberikan apersepsi	
	dengan menanyakan materi	
	sebelumnya, yaitu Ardan Mr	
	4. Pendidik memberikan motivasi	
	kepada peserta didik	
	"kita sering menggunakan satuan	
	jumlah dalam kehidupan sehari-	
	hari. Misalnya ketika membeli gula	
	pasir di warung sebanyak 1kg,	
	minyak goreng 1L, satu lusin	
	sendok. Sama halnya dengan	

KEGIATAN	DESKRIPSI	WAKTU
	kejadian tersebut, ilmu kimia juga	,,,,,,,,,
	memiliki satuan, yaitu mol."	
	5. Pendidik menyampaikan tujuan	
	pembelajaran, yaitu peserta didik dapat memahami pengertian mol,	
	serta menentukan hubungan mol	
	dengan jumlah partikel, massa, dan	
	volume molar	
	6. Pendidik membagi LKPD di Whats App room	
Inti	w natsApp 100m	95 menit
	1. Predict	
	• peserta didik melakukan prediksi	
	yang ada di LKPD	
	Peserta didik memberikan prediksi berdasarkan pengetahuan awal yang	
	dimiliki	
	2. Observe	
	Peserta didik mengamati tabel regio dikumanya tuk melih at masasa	
	periodik unsur untuk melihat massa atom	
	 Peserta didik melakukan kajian 	
	literatur dari buku (Science) dan	
	internet (Technology)	
	 Peserta didik merumuskan cara penyelesaian masalah yang 	
	disajikan (Engineering)	
CTAT	Peserta didik melakukan	
CIII	perhitungan untuk menjawab masalah yang disajikan	
3UN	(Mathematics)	
YO	Peserta didik membandingkan hasil	
	pengamatan dengan prediksiPeserta didik melakukan analisis	
	terhadap prediksi dan hasil	
	pengamatan beserta alasannya	
	3. Explain	
	 Satu atau dua peserta didik mempresentasikan hasil temuannya 	
	kepada teman-teman yang lain	
	Peserta didik lain memberikan	
	tanggapan terhadap jawaban dari	
	peserta didik yang presentasi	

KEGIATAN	DESKRIPSI	WAKTU
Penutup		10 menit
	1. Pendidik memberi informasi	
	kepada peserta didik bahwa materi	
	selanjutnya yaitu hubungan mol	
	molaritas, perhitungan kimia, dan	
	pereaksi pembatas.	
	2. Pendidik mengingatkan peserta	
	didik untuk mengumpulkan hasil	
	temuan di <i>WhatsApp room</i>	
	3. Pendidik menutup pembelajaran	
	dengan salam.	

Pertemuan 3 (120 menit)

Tertemuan 3 (120 memt)				
KEGIATAN	DESKRIPSI	WAKTU		
STAT SUN Y O	 Pendidik memberikan salam pembuka Pendidik mengecek kehadiran peserta didik melalui WhatsApp room Pendidik memberikan apersepsi dengan menanyakan materi sebelumnya, yaitu hubungan mol dengan jumlah partikel, massa dan volume molar Pendidik memberikan motivasi kepada peserta didik "Ketikakalian membuat kopi, apa saja komponen penyusunnya? Dan berapa takaran yang digunakan untuk menghasilkan kopi yang enak? Pembahasan kali ini, kita menggunakan prinsip yang sama dengan kejadian tersebut. kita akan menghitung takaran komponen atau hasil dari reaksi kimia." Pendidik menyampaikan tujuan pembelajaran, yaitu peserta didik dapat memahami hubungan mol dengan molaritas, memecahkan perhitungan kimia, dan pereaksi pembatas. 	15 menit		

KEGIATAN	DESKRIPSI	WAKTU
	Pendidik membagi LKPD melalui Whats App room.	
Inti	 1. Predict peserta didik melakukan prediksi yang ada di LKPD Peserta didik memberikan prediksi berdasarkan pengetahuan awal yang dimiliki 	70 menit
	2. Observe Peserta didik melakukan kajian literatur dari buku (Science) dan internet (Technology) Peserta didik berusaha untuk mencari cara penyelesaian masalah yang disajikan (Engineering) Peserta didik melakukan perhitungan untuk menjawab masalah yang disajikan (Mathematics)	
	 Peserta didik membandingkan hasil pengamatan dengan prediksi Peserta didik melakukan analisis terhadap prediksi dan hasil pengamatan beserta alasannya Explain Satu atau dua peserta didik 	
SUN Y O	Satu atau dua peserta didik mempresentasikan hasil diskusi kepada teman-teman yang lain Peserta didik lain memberikan tanggapan terhadap jawaban dari kelompok presentasi	
Penutup	Pendidik memberikan tugas membuat laporan praktikumdari video demonstrasi mengenai pereaksi pembatas Pendidik menutup pembelajaran dengan salam.	10 menit

(PRAKTIKUM)

KEGIATAN	DESKRIPSI	WAKTU
Pendahuluan	 Pendidik menyampaikan tujuan pembelajaran, yaitu peserta didik melakukan praktikum untuk penerapan konsep pereaksi pembatas. Pendidik membagi LKPD di WhatsApp group 	3 menit
STATI SUN Y O	 Predict Pendidik membimbing peserta didik untuk melakukan prediksi mengenai percobaan yang akan dilakukan Peserta didik memberikan prediksi berdasarkan pengetahuan awal yang dimiliki Observe Peserta didik melakukan kajian literatur dari buku (Science) dan internet Peserta didik merancang takaran bahan untuk percobaan sederhana (Engineering) Peserta didik menggunakan rangkaian alat sederhana untuk melakukan percobaan (Technology) Peserta didik berdiskusi dam melakukan perhitungan untuk menjawab masalah yang disajikan (Mathematics) Peserta didik membandingkan hasil pengamatan dengan prediksi Explain (peserta didik membuat 	20 menit
Penutup	laporan praktikum). • Pendidik memberikan informasi	2 menit
r	kepada peserta didik untuk membuat laporan praktikum sesuai data yang telah didapatkan. • Pendidik memberikan informasi	

	pengumpulan laporan praktikum satu minggu kemudian.	
•	Pendidik menutup pembelajaran dengan salam.	

Posttest (40 menit)

2. Kelas Kontrol

Pertemuan 1 (120 menit)

(Pretest 40 menit)

KEGIATAN	DESKRIPSI	WAKTU
Pendahuluan		15 menit
	1. Pendidik memberikan salam	
	pembuka	
	2. Pendidik mengecek kehadiran	
	melalui WhatsApp room	
	3. Pendidik memberikan apersepsi	
	dengan menanyakan materi	
	sebelumnya, yaitu mengenai	
	persamaan kimia 4. Pendidik memberikan motivasi	
	kepada peserta didik	
	"kita sering menggunakan satuan	
	jumlah dalam kehidupan sehari-	
	hari. <mark>Mis</mark> alnya ketika membeli	
	gula pasir di warung sebanyak	
	1kg, minyak goreng 1L, satu lusin	
	sendok. Sama halnya dengan	
	kejadian tersebut, ilmu kimia juga	
	memiliki satuan, yaitu mol."	
CTATE	5. Pendidik menyampaikan tujuan	
SIAIL	pembelajaran, yaitu peserta didik	
SUN	dapat menentukan massa atom relative (Ar) dan massa molekul	
VO	relative (Mr) suatu senyawa	
10	6. Pendidik membagi LKPD di	
	WhatsApp room	
Inti		55 menit
	1. Stimulation	
	Peserta didik mengamati	
	penjelasan mengenai massa	
	atomrelative, massa molekul relative (mengamati)	
	2. Problem statement	
	Peserta didik diharapkan	
	mengajukan pertanyaan:	
	mengajakan pertanyaan.	

KEGIATAN	DESKRIPSI	WAKTU
	a. Bagaimana menentukan	
	Ar dan Mr? (menanya)	
	3. Data collecting	
	 Peserta didik memahami dan 	
	mengerjakan ulang latihan	
	soal untuk membangun	
	pemahaman peserta didik	
	tentang massa atom/molekul	
	relative (mencoba) 4. Data processing	
	 peserta didik mengerjakan 	
	LKPD mengenai massa atom	
	relative dan massa molekul	
	relative (mengasosiasikan)	
	5. Data verification	
	Peserta didik diminta	
	menuliskan hasil temuan di	
	buku kemudian dikirimkan	
	dalam bentuk foto ke	
	Whats App pendidik	
	(mengomunikasikan)	
	6. Gener <mark>al</mark> ization	
	Pendidik bersama peserta	
	didik menyimpulkan materi	
	massa atom relative dan	
Domistica	massa molekul relative	10
Penutup	1. Pendidik bersama peserta didik	10 menit
	menyimpulkan materi massa atom	
STATE	S relative, massa molekul relative	
CILL	2. Pendidik memberi informasi	
SUN	kepada peserta didik bahwa materi	
N/O	selanjutnya yaitu hubungan mol	
YU	dengan jumlah partikel, massa,	
	dan volume molar	
	3. Pendidik mengingatkan peserta	
	didik untuk mengirimhasil	
	temuannya di <i>WhatsApp room</i> 4. Pendidik menutup pembelajaran	
	4. Pendidik menutup pembelajaran dengan salam.	
<u></u>	aciigaii saiaiii.	

Pertemuan 2 (120 menit)

Pertemuan 2 (120 menit)					
KEGIATAN	DESKRIPSI	WAKTU			
Pendahuluan	Pendidik memberikan salam pembuka Pendidik mengecek kehadiran peserta didik di WhatsApp room Pendidik memberikan apersepsi dengan menanyakan materi sebelumnya, yaitu Ar dan Mr Pendidik memberikan motivasi kepada peserta didik "kita sering menggunakan satuan jumlah dalam kehidupan seharihari. Misalnya ketika membeli gula pasir di warung sebanyak 1kg, minyak goreng 1L, satu lusin sendok. Sama halnya dengan kejadian tersebut, ilmu kimia juga memiliki satuan, yaitu mol." Pendidik menyampaikan tujuan pembelajaran, yaitu peserta didik dapat memahami konsep mol dan hubungannya dengan jumlah	15 menit			
	 partikel, massa, dan volume molar Pendidik membagi LKPD di WhatsApp room 				
Inti		95 menit			
STATE SUN Y O	Stimulation Peserta didik mengamati video mengenai konsep mol Peserta didik mengamati penjelasan mengenai memahami konsep mol dan hubungannyadengan jumlah partikel, massa, dan volume molar (mengamati)				
	 Problem statement Peserta didik diharapkan mengajukan pertanyaan: a. Bagaimana konsep dari mol? b. Bagaimana hubungan mol dengan jumlah partikel? 				

KEGIATAN	DESKRIPSI	WAKTU
	22222	***************************************
	c. Bagaimana hubungan	
	mol dengan massa?	
	d. Bagaimana hubungan mol dengan volume	
	molar? (menanya) 3. Data collecting	
	3. Data collectingPeserta didik memahami dan	
	mengerjakan ulang latihan	
	C y	
	soal untuk membangun pemahaman tentang	
	memahami konsep mol dan	
	hubungannya dengan jumlah	
	partikel, massa, dan volume	
	molar (mencoba)	
	4. Data processing	
	Peserta didik mengerjakan	
	LKPD mengenai konsep mol	
	dan hubungannya dengan	
	jumlah partikel, massa, dan	
	volume molar	
	(mengasosiasikan)	
	Pendidik membimbing	
	peserta didik untuk mengisi	
	LKPD dan mengaitkannya	
	dengan materi mengenai	
	konsep moldan hubungannya	
	dengan jumlah partikel,	
	massa, dan volume molar	
STATE	5S Data verification/ERSITY	
CIINI	Peserta didik menuliskan	
DUIN	hasil temuan di buku	
1/0	kemudian dikirimkan melalui	
YO	G Y WhatsAppA K A	
	(mengomunikasikan)	
	6. Generalization	
	 Pendidik bersama peserta 	
	didik menyimpulkan materi	
	mengenai konsep mol dan	
	hubungannya dengan jumlah	
	partikel, massa, dan volume	
	molar	

KEGIATAN	DESKRIPSI	WAKTU
Penutup		25 menit
	 Pendidik memberi informasi 	
	kepada peserta didik bahwa	
	kegiatan selanjutnya yaitu	
	hubungan mol den gan molaritas,	
	menyeles aikan perhitungan kimia,	
	dan pereaksi pembatas	
	2. Pendidik mengingatkan peserta	
	didik untuk mengirimkan hasil	
	temuan di WhatsApp	

Pertemuan 3 (120 menit)

KEGIATAN	DESKRIPSI	WAKTU
STATE SUN Y O	1. Pendidik memberikan salam pembuka 2. Pendidik mengecek kehadiran peserta didik di WhatsApp room 3. Pendidik memberikan apersepsi dengan menanyakan materi sebelumnya, yaitu mengenai memahami konsep mol dan hubungannya dengan jumlah partikel, massa, dan volume molar 4. Pendidik memberikan motivasi kepada peserta didik "Ketika kalian membuat kopi, apa saja komponen penyusunnya? Dan berapa takaran yang digunakan untuk menghasilkan kopi yang enak? Pembahasan kali ini, kita menggunakan prinsip yang sama dengan kejadian tersebut. kita akan menghitung takaran komponen atau hasil dari reaksi kimia. 5. Pendidik menyampaikan tujuan pembelajaran, yaitu peserta didik dapat memahami hubungan mol dengan molaritas, menyelesaikan perhitungan kimia, dan pereaksi pembatas	WAKTU 15 menit
	6. Pendidik membagi LKPD di	

KEGIATAN	DESKRIPSI	WAKTU
	WhatsApp room	
Inti	1. Stimulation	95 menit
	Peserta didik mengamati	
	video yang berkaitan dengan pereaksi pembatas	
	Peserta didik mengamati	
	penjelasan mengenai materi	
	hubungan mol dengan	
	molaritas, menyelesaikan	
	perhitungan kimia, dan	
	pereaksi pembatas (mengamati)	
	2. Problem statement	
	Peserta didik diharapkan	
	mengajukan pertanyaan:	
	a. Bagaimana hubungan	
	mol dengan molaritas?	
	b. Bagaimana menyelesaikan	
	perhitungan kimia/	
	stoikiometri sederhana?	
	c. Bagaimana menentukan	
	pereaksi pembatas dari	
	suatu reaksi? (menanya) 3. Data collecting	
	Peserta didik memahami dan	
CTATE	mengerjakan ulang latihan	
SIAIE	soal untuk membangun	
SUN	pemahaman peserta didik	
1/0	mengenai hubungan mol dengan molaritas,	
YO	dengan molaritas, menyelesaikan perhitungan	
	kimia, dan pereaksi pembatas	
	(mencoba)	
	4. Data processing	
	Peserta didik mengerjakan	
	LKPD mengenai hubungan	
	mol dengan molaritas, menyelesaikan perhitungan	
	kimia, dan pereaksi pembatas	
	(mengas osias ikan)	
	5. Data verification	

KEGIATAN	DESKRIPSI	WAKTU
	Peserta didik menuliskan hasil temuan di buku kemudian dikumpulkan di WhatsApp room (mengomunikasikan) Generalization Pendidik bersama peserta didik menyimpulkan materi mengenai hubungan mol dengan molaritas, menyelesaikan perhitungan	
	kimia, dan pereaksi pembatas	
Penutup	Pendidik bersama peserta didik menyimpulkan materi mengenai hubungan mol dengan molaritas, menyeles aikan perhitungan kimia, dan pereaksi pembatas Pendidik menutup pembelajaran dengan salam.	10 menit

Pertemuan 4

Posttest (40 menit)

H. Penilaian

1. Teknik Penilaian:

A. Penilaian Kognitif : Tes Tertulis

B. Penilaian Psikomotorik : Teknik lain (angket)

2. Bentuk Penilaian ::

A. Tes tertulis : Uraian

B. Angket A: Skala Likert A

3. Instrumen penilaian : soal pretest dan *posttest*;

LKPD

Bantul, April 2020

Mengetahui, Pendidik Kimia

Peneliti,

<u>Masiyati, S.Pd.</u> NIP. 19740703 200604 2 016 Mustaqimatul F. NIM. 16670039

Lampiran 2. Lembar Kerja Peserta Didik

LEMBAR KERJA DESERTA DIDIK

Materi : Konsep Mol dan Stoikiometri

Sub Materi : Massa atom relatif dan massa molekul relatif

Kelas/Semester: X-MIPA/ 2

Jawablah pertanyaan berikut dengan benar!

1. Lengkapi titik-titik dalam tabel berikut:
(Ar Na= 23; O= 16; H=1; S=32; Massa 1 atom C-12= 1,99 x 10⁻²³ gram)

No	Senyawa	Ar	Massa 1	%	% isotop
		atau	atom zat	isotop 1	2
		Mr			
1.	NaOH	L			
2.	H_2SO_4	••••			
3.	Ca		6,633 x10		
			²³ gram		
4.	X			40% X-	60% X-
				24	26

- 2. Diketahui beberapa senyawa berikut:
 - a. CaCOTATE ISLAMIC UNIVERSITY
 - b. Ab(SO₄)₃
 - c. CuSO₄

Urutkan senyawa berdasarkan kenaikan massa molekul relatif! (Ar Ca= 40; C=12; O= 16; Al= 27; S= 32; Cu= 63,5)

3. Unsur merupakan zat murni yang tidak dapat diuraikan menjadi zat-zat yang lebih sederhana. Sampai saat ini, dikenal 112 macam unsur alam dan buatan yang terbagi menjadi unsur logam maupun non logam. Akan tetapi, karena banyak unsur memiliki lebih dari satu isotop alami, hubungan antara massa atom relatif dari seorang Kimiawan dan fisikawan tidak selalu mudah. Massa atom relatif unsurunsur yang dijumpai di alam dapat diperoleh sebagai rata-

rata massa isotop setiap unsur, yang ditimbang berdasarkan fraksi kelimpahannya. Diketahui seorang Kimiawan telah menemukan beberapa unsur dan senyawa dengan rincian sebagai berikut:

- a. Ar X 10,2 dan massa 1 atom C-12 adalah 2 x 10⁻²³ gram.
- b. Unsur Y dengan massa atom relatif 43,7 diketahui memiliki dua isotop yaitu ⁴²Y dan ⁴⁴Y.
- c. Unsur Z dengan massa atom relatif 10,8 terdiri dari 20% isotop Z-10 dan 80% isotop lainnya.

Sebagai seorang Kimiawan muda, bantulah Kimiawan tersebut untuk menemukan massa atom X, kelimpahan persentase kedua isotop unsur Y, dan isotop Z lainnya!

© ~ Selamat mengerjakan ~ ©

LEMBAR KERJA DESERTA DIDIK

Materi : Konsep Mol dan Stoikiometri

Sub Materi : Hubungan mol dengan massa dan jumlah

partikel, dan Volume molar

Kelas/Semester: X-MIPA/ 2

1. Lengkapi tabel di bawah ini!

(Ar H=1;O=16; Fe= 56; S=32; N=14; Na= 23; Cl=35,5)

No	Nama zat	Rumus	Mr	Massa	mol
		kimia		(gram)	
1.	Besi	Fe	56	56	1 mol
2.	Garam	NaCl	58,5		0,2 mol
	dapur				
3.	Asam	H ₂ SO ₄	98	4,6	
	sulfat				
4.	Gas klorin	Cl ₂		3,55 gram	0,05
					mol

- 2. Apabila diketahui:
 - a. $12,04 \times 10^{22}$ molekul gas O_2 (Ar O=16)
 - b. 3.01×10^{22} atom Na (Ar Na= 23) VERSIT
 - c. $0,4 \text{ mol } H_2SO_4 \text{ (Ar H=1; S= 32; O=16)}$

Tentukan massa atom/molekul terbesar dan terkecil!

3. Beni memiliki kebiasaan bangun pagi pukul 05.00. setelah melakukan ritual paginya, dia bergegas untuk olahraga mengelilingi kompleks perumahan. Dia sangat menyukai udara pagi yang menyejukkan dan terasa segar. Karena penasaran dengan udara di pagi hari, Beni mencari informasi mengenai komposisi udara pagi di internet. Kemudian beni menemukan sebuah artikel yang menyebutkan bahwa dalam udara pagi mengandung 15 gram unsur M sebanyak 2,4 x

10²³ partikel. Keterangan tersebut membuat Beni semakin penasaran dengan unsur M tersebut.

Berdasarkan wacana di atas, bantulah Beni mencari tahu unsur M dengan menemukan massa atom relatif unsur M! (Bil. Avogadro 6,02x10²³ partikel)

4. Kerjakan soal di bawah ini!

- a. Seorang laboran kimia di SMA Tunas Cendekia sedang melakukan pengecekan bahan kimia. Ketika membuka pintu lemari, ia menemukan tiga botol berisi bahan kimia. Massa dari masing-masing botol adalah sama, yaitu 5 gram. Ketiga bahan tersebut adalah K₂CrO₄, NaOH, dan KMnO₄. Aturan penataan barang di laboratorium tersebut adalah berdasarkan besarnya jumlah mol mulai dari terkecil ke terbesar. Bantulah laboran untuk mengurutkan ketiga bahan berdasarkan jumlah mol dari kecil ke besar! (Ar K=39; Cr=52; O=16; Na=23; Mn=55; H=1)
- b. Suatu reaksi kimia menghasilkan senyawa dengan massa 127,75 gram. Hitunglah jumlah partikel senyawa tersebut jika diketahui massa molekul relatifnya adalah 35,7 dan bilangan Avogadro 6,02x10²³ partikel.

5. Kerjakan soal di bawah ini!

- a. Volume dari 2 mol gas Θ_2 suhu 0^0C dan tekanan 1 atm adalah Apabila massa gas O_2 (Ar Θ = 16) menjadi 38,4 gram, volume gas O_2 pada suhu dan tekanan sama adalah
- b. Seorang analis kimia sedang menguji penelitiannya mengenai volume gas Nitrogen (N_2) . Hasil analisis menunjukkan bahwa apabila diletakkan pada keadaan standar, gas tersebut memiliki jumlah 3 mol. Apabila diletakkan pada suhu 30^{0} C dan tekanan 3,1 atm; maka memiliki jumlah 3 mol juga.

Berdasarkan hasil analisis di atas, **Apakah volume gas** N₂ yang digunakan adalah sama? Jelaskan! (R=0,082 L.atm/mol.K)

6. Lengkapi tabel berikut! (R= 0,082 L.atm/mol.K; Ar C= 12; H=1)

N	Senya	Jumlah	mas	M	Tekan	Suhu	Volu
О	wa	partikel	sa	r	an		me
1.	SO_2	3,01 x10 ²³			1 atm	0° C	••••
		$x10^{23}$					
2.	CH_4		32		2 atm	27°C	••••
			gra	•			
			m				
3.	C_2H_6	1,505x1			3 atm	19,6 ⁰	••••
		0^{23}				С	

© ~ Selamat mengerjakan ~©

LEMBAR KERJA DESERTA DIDIK

Materi : Konsep Mol dan Stoikiometri

Sub Materi : Hubungan mol dengan molaritas dan

stoikiometri

Kelas/Semester: X-MIPA/ 2

Kerjakan soal di bawah ini dengan baik!

1. Apabila 50 gram sukrosa (C₁₂H₂₂O₁₁) (Ar C= 12, H= 1, O= 16) diencerkan dengan akuades 500 ml, berapa konsentrasi sukrosa sekarang?

- 2. Seorang peserta didik akan melakukan praktikum stoikiometri dengan menggunakan pereaksi NaOH. Dalam buku panduan praktikumnya, tertera larutan NaOH 0,1M dan HCl 0,01M. Akan tetapi, peserta didik tersebut hanya menemukan larutan HCl 0,01M. NaOH yang ditemukan peserta didik adalah dalam bentuk padatan. Larutan NaOH (Mr= 40) dapat dihasilkan dari padatan NaOH yang dilarutkan pada akuades. Bantulah peserta didik tersebut mendapatkan massa NaOH untuk membuat larutan NaOH 0,1M jika akuades yang tersedia 2L.
- 3. Sebanyak 5,4 gram aluminium (Ar Al= 27) direaksikan dengan larutan asam klorida menurut reaksi: $Al + HCl \rightarrow AlCl_3 + H_2$ (belum setara) Hitunglah banyaknya volume gas hidrogen yang dihasilkan

Hitunglah banyaknya volume gas hidrogen yang dihasilkan pada keadaan standar (STP) dan pada 380 mmHg 20°C ! (R=0,082 L.atm/mol.K)

4. Logam tembaga sebanyak 6,35 gram dilarutkan dalam 700 ml larutan HCl 0,2 M menurut persamaan reaksi:

$$Cu_{(s)} + 2HCl_{(aq)} \rightarrow CuCl_{2(aq)} + H_{2(g)}$$

- a. Tentukan pereaksi pembatasnya (Ar Cu= 63,5; H=1; Cl= 35,5)
- b. Berapa mol sisa pereaksi?
- c. Berapa massa CuCl₂ yang terbentuk?
- 5. Sebanyak 42,25 gram serbuk seng direaksikan dengan larutan 100 ml H₂SO₄ 0,5 M menghasilkan larutan besi (II) sulfat menurut reaksi:

$$Zn_{(s)} + H_2SO_4 \rightarrow ZnSO_{4(aq)} + H_{2(g)}$$

Tentukan:

- a. Pereaksi pembatas (Ar Zn=65; H=1; S=32; O=16)
- b. mol sisa pereaksi?
- c. volume gas hidrogen (H₂) yang terbentuk pada keadaan standar?

Lampiran 3. Kisi-kisi Angket Kemampuan Berpikir Kritis

KISI-KISI ANGKET KEMAMPUAN BERPIKIR KRITIS

Indikator		ıtir	Jumlah	
Hakatoi	+	-	Juiinaii	
Mengenal masalah	1	5	2	
Menemukan cara untuk memecahkan	6	4	2	
masalah				
Mengenal asumsi	2	3	2	
Penggunaan bahasa	7	9	2	
Analisis data	8	13	2	
Evaluasi pernyataan	12	15	2	
Hubungan logis antara masalah- masalah	10	14	2	
Menarik kesimpulan	11	16	2	

(Diambil dari Fisher, Alex. 2009. *Berpikir Kritis: Sebuah Pengantar*. Jakarta: Erlangga.)

Lampiran 4. Lembar Angket Kemampuan Berpikir Kritis

LEMBAR ANGKET KEMAMPUAN BERPIKIR KRITIS

Nama : Kelas : No. Absen : Petunjuk Pengisian:

- 1. jawablah pernyataan-pernyataan berikut ini dengan sebenar-benarnya
- 2. Baca dengan saksama petunjuk dan pernyataan di bawah ini sebelum anda mengisi
- 3. Pilihlah salah satu jawaban sesuai dengan kenyataan yang anda alami
- 4. Setiap soal hanya diperbolehkan menjawab satu pilihan

No	Pernyataan	Selalu	Sering	Kadang	Tidak Pernah
1	Saya dapat mengidentifikasi masalah yang disajikan			_	
2	Saya membuat asumsi dengan jelas dan spesifik				
3	Saya tidak bisa membuat asumsi dengan jelas dan spesifik				
4	Saya tidak dapat merumuskan aturan yang digunakan untuk memecahkan masalah				
5	Saya tidak dapat = S mengidentifikasi masalah yang disajikan	AL	VERS	GA	
6	Saya dapat merumuskan aturan yang digunakan untuk memecahkan masalah	KA	RT	Α	
7	Saya menggunakan bahasa dengan tepat dan jelas dalam menyampaikan informasi				
8	Saya jujur dalam menganalis is data has il percobaan				
9	Saya menggunakan bahasa dengan berbelit-belit dalam menyampaikan informasi				
10	Saya menggunakan hubungan yang logis antar pernyataan-				

No	Pernyataan	Selalu	Sering	Kadang	Tidak Pernah
	pernyataan				
11	Saya menarik kesimpulan				
	denganjelas				
12	Saya logis dalam melakukan				
	evaluasi fakta dan pernyataan				
13	Saya tidak jujur dalam				
	menganalis is data hasil				
	percobaan				
14	Saya tidak menggunakan				
	hubungan yang logis antar				
	pernyataan-pernya <mark>taan</mark>				
15	Saya iras ional dalam				
	melakukan evaluasi fakta dan				
	pernyataan				
16	Saya menarik kesimpulan	7.4			
	dengan berbelit-belit		7//		

Lampiran 5. Kisi-kisi Angket Keterampilan Komunikasi

KISI- KISI ANGKET KETERAMPILAN KOMUNIKASI

Aspek yang	Indikator	Bı	ıtir	Jumlah
diamati	makator	+	-	Juiinaii
Komunikasi publik	a. Keberanian	1	5	2
(presentasi di	b. Kemampuan	3	4	2
depan kelas)	menghadapi			
	sejumlah orang			
	 c. Daya tarik fisik 	2	6	2
	pembicara			
Komunikasi	a. Menyimak secara	7	8	2
interpersonal	efektif			
	b. Keterampilan	9	10	2
	bertanya			
	c. Menyimpulkan/	11	12	2
	menyampaikan			

(Diambil dari Irianta<mark>ra, Yosal. 2014. *Komunikasi Pembelajaran*. Bandung: Simbiosa Rekatama)</mark>

Lampiran 6. Lembar Angket Keterampilan Komunikasi

LEMBAR ANGKET KETERAMPILAN KOMUNIKASI

Nama : Kelas : No. Absen : Petunjuk Pengisian:

- 1. jawablah pernyataan-pernyataan berikut ini dengan sebenar-benarnya
- 2. Baca dengan saksama petunjuk dan pernyataan di bawah ini sebelum anda mengisi
- 3. Pilihlah salah satu jawaban sesuai dengan kenyataan yang anda alami
- 4. Setiap soal hanya diperbolehkan menjawab satu pilihan

No	Pernyataan	Selalu	Sering	Kadang	Tidak Pernah
1	Saya yakin dalam menyampaikan hasil				
	diskusi kelompok dengan				
	argumen yang kuat di				
	WhatsApp group				
2	Saya tampil bersih dan				
	rapi ketika menyampaikan				
	hasil diskusi di <i>WhatsApp</i>				
	group				
3	Saya dapat menguasai diri	IC UN	IVERS	ITY	
	dari rasa cemas dan takut	KAI	IIA	CA	
	dalam menyampaikan		רוו	UA	
	hasil diskusi di <i>WhatsApp</i> group	A K A	ART	A	
4	Saya tidak dapat				
	menguasai diri dari rasa				
	cemas dan takut dalam				
	menyampaikan hasil				
	diskusi di WhatsApp group				
5	Saya ragu dalam				
	menyampaikan hasil				
	diskusi kelompok di depan				
	kelas				

No	Pernyataan	Selalu	Sering	Kadang	Tidak Pernah
6	Saya tampil kotor dan				
	kusut ketika				
	menyampaikan hasil				
	diskusi di WhatsApp group				
7	Saya mendengarkan dan				
	memahami dengan baik				
	setiap prosedur dan arahan				
	pendidik/ teman				
8	Saya acuh terhadap				
	prosedur dan ara <mark>han dari</mark>				
	pendidik/ teman				
9	Saya bertanya kepada				
	teman/ pendidik dengan				
	jelas dan mudah dipahami				
10	Saya bertanya kepada		$\langle 1 \rangle$		
	pendidik/ teman dengan				
	berbelit- belit				
11	Saya berbicara dengan				
	lancar dan jelas ketika				
	pendidik/ teman bertanya				
	tentang pendapat saya				
12	Saya berbicara untuk				
	mencari muka di depan				
	pendidik/ teman				

SUNAN KALIJAGA Y O G Y A K A R T A

Lampiran 7. Kisi-kisi Soal Tes Kemampuan Berpikir Kritis

KISI-KISI SOAL TEST

No	Indikator Pencapaian Kompetensi	Indikator berpikir kritis	Indikator Soal	Level Kognitif	Bentuk Soal	No soal
1	Peserta didik dapat mengonversikan jumlah mol dengan jumlah partikel dan massa	Menemukan cara untuk menyelesaikan masalah	Diberikan beberapa informasi mengenai unsur fos for. Peserta didik diharapkan dapat menganalisis dan menemukan cara untuk menyelesaikan masalah	C4	Uraian	1
2	Peserta didik dapat mengonversikan jumlah mol dengan volume gas dan massa molar serta volume molar	Analisis data	Diberikan pernyataan mengenai unsur oksigen dalam tubuh manusia. Peserta didik diharapkan dapat menganalisis data untuk menyelesaikan masalah	C4	Uraian	2
3	Peserta didik dapat mengidentifikasi pereaksi pembatas dari suatu reaksi	Menarik kesimpulan STATE ISLA	Diberikan pernyataan mengenai perhitungan kimia dan pereaksi pembatas. Peserta didik diharapkan dapat mengidentifikasi data untuk menarik kesimpulan dari reaksi yang terjadi.	C4	Uraian	3
4	Peserta didik dapat mengidentifikasi pereaksi pembatas dari suatu reaksi	Evaluasi pernyataan	Diberikan beberapa pernyataan mengenai konsep mol dan pereaksi pembatas. Peserta didik diharapkan dapat menganalisis dan menemukan cara untuk menyelesaikan masalah	C4	Uraian	4

Lampiran 8. Soal Tes Kemampuan Berpikir Kritis

SOAL TEST

1. Fosfor merupakan unsur kimia golongan VA yang berupa unsur non logam. Fosfor biasanya ditemukan dalam batuan fosfat anorganik dan dalam semua sel hidup, tetapi tidak pernah ditemui dalam unsur bebasnya. Berikut ditemukan kelimpahan isotop unsur fosfor di alam:

Isotop	Massa	Kelimpahan di alam (%)
P-15	14,986	96,61
P-16	15,988	3,12
P-17	16,987	0,27

Berapakah jumlah atom yang ada dalam 7,75 gram fosfor? (Ar Fosfor= 31)

- 2. Oksigen merupakan unsur yang memiliki kelimpahan terbesar dalam tubuh manusia, yaitu sekitar 65%. Oleh karena itu, oksigen berkontribusi pada sebagian besar massa tubuh manusia. Dalam suatu keadaan, molekul oksigen dalam tubuh manusia memiliki jumlah partikel 8,75 x 10²³. berapakah volume O₂ jika diukur pada keadaan standar? (Ar O=16; bil Avogadro 6,02 x 10^{23})
- 3. Seorang peserta didik melakukan praktikum dengan mereaksikan 2,7 gram logam aluminium dengan 100 ml HCl 0,6 M menurut reaksi: AMIC UNIVERSITY

$$2Al_{(s)} + 6HCl_{(aq)} \rightarrow 2AlCl_{3(aq)} + 3H_{2(g)}$$

 $2Al_{(s)}+6HCl_{(aq)} \rightarrow 2AlCl_{3(aq)}+3H_{2(g)}$ Setelah melakukan perhitungan, peserta didik menyimpulkan bahwa reaksi pembatas dari praktikum ini adalah logam Al. (Ar Al= 27)

Berdasarkan pernyataan di atas, tentukan kesimpulan peserta didik benar atau salah dan jelaskan dengan perhitungan yang telah dipelajari!

4. Suatu bejana direaksikan sebanyak 56 gram gas nitrogen atau N₂ (Ar N=14) dengan 16 gram gas hidrogen atau H₂ (Ar H=1). Reaksi yang terjadi adalah:

$$N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$$

Berdasarkan pernyataan di atas, tentukan:

- a. pereaksi pembatas
- b. Mol sisa pereaksi
- c. Massa NH₃ yang terbentuk

Lampiran 9. Kunci Jawaban Soal Tes Kemampuan Berpikir Kritis

KUNCI JAWABAN DAN PEDOMAN PESKORAN

No.	Kunci <mark>ja</mark> waban	Skor
1.	Identifikasi masalah:	2
	- Fosfor merupakan unsur kimia golongan VA yang berupa unsur non logam.	
	- Fosfor biasanya ditemukan dalambatua <mark>n fosfat anorganik dan</mark> dalam semua sel hidup, tetapi tidak pernah	
	ditemui dalam uns ur bebasnya	
	- Diketahui: massa atom fos for=7,75 gram	
	Ar P= 31	
	Penyelesaian mas alah:	
	- Ditanya: jumlah atomP	
	Jawab:	4
	- MolP= $\frac{massa}{s} = \frac{7,75gram}{s} = 0,25mol$	
	- MolP= $\frac{1}{Ar} = \frac{1}{31} = 0,25 mol$	
	111 01	+
	- Jumlah atom= $n \times P$	4
	$= 0.25 \text{ mol } x 6.02 \times 10^{23}$	
	= 1.5×10^{23} atom TATE ISLAMIC UNIVERSITY	
	SUNAN KALHAGA	

YOGYAKARTA

No.	Kunci jawaban	Skor
2.	Identifikasi masalah:	2
	 Oksigen merupakan unsur yang memiliki kelimpahan terbesar dalam tubuh manusia, yaitu sekitar 65%. Diketahui= jumlah partikel 8,75 x 10⁻²³. Ar O= 16 	
	Penyelesaian masalah=	
	- Ditanya= volume O ₂ pada keadaan sta <mark>ndar</mark> ?	
	- Jawab= $n = \frac{jumlahatom}{P} = \frac{8,75x10^{23}}{6,02x10^{23}} = 1,45mol$	4
	V(STP) = nx22, 4 = 1,45 mol x 22, 4 = 32,48 L	4

SUNAN KALIJAGA Y O G Y A K A R T A

. Kunci jawaban	Sko
Identifikasi masalah:	2
- Diketahui= Massa Al= 2,7 gram, Ar Al=27	
V HCl= 100 ml= 0,1 L	
M HCl= 0,6 M menurut reaksi:	
$2Al + 6HCl \rightarrow 2AlCl_3 + 3H_2$	
- Pernyataan: Pereaksi pembatas= Al Ditanya= pernyataan benar atau salah?	
Jawab=n HCl= M x V= 0,6 M x 0,1 L= 0,06 mol	4
$nAl = \frac{massa}{Ar} = \frac{2,7gram}{27} = 0,1mol$	
$2Al + 6HCl \rightarrow 2AlCl_3 + 3H_2$	4
M 0,1 0,06	
R 0,02 0,06 0,02 0,03 STATE ISLAMIC UNIVERSITY	
S 0,08 - 0,02 0,03 A A A A A	-
Kesimpulan=HCl menjadi pereaksi pembatas (pernyataan salah)	

No.	Kunci jawaban	Skor
4.	Identifikasi masalah	2
	- Massa gas N_2 = 56 gram - Massa gas H_2 =16 gram.	
	$N_{2(g)}+3H_{2(g)} \rightarrow 2NH_{3(g)}$	
	- Ditanya=pernyataan yang benar	
	- Jawab=	5
	$nN_2 = \frac{massa}{Mr} = \frac{56}{28} = 2mol$	
	$nH_2 = \frac{massa}{Mr} = \frac{16}{2} = 8mol$	
	$N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$	
	M = 2 8	
	R 2 6 4	_
	S - 2 4	
	STATE ISLAMIC UNIVERSITY	
	Pereaksi pembatas=N ₂ SUNAN KALIJAGA	3
	mol sisa pereaksi=2 mol gas H ₂ Massa NH ₃ yang terbentuk=4 mol x 17 g/mol = 68 gram. A K A R T A	

Penilaian =
$$\frac{\text{skor peroleh}}{40} \times 100$$

Lampiran 10. Hasil Test Kemampuan Berpikir Kritis

HASIL TEST KELAS EKSPERIMEN

No.	Nama	L/P	Pretest	Posttest
1	ADELIA ZENIA PUTRI	P	40	100
2	AGUS DWI PRASETYO	L	30	68
3	AMALIA NUR AFIFAH	P	35	88
4	ANIDDIYA MIRZA FAKHRANI	P	40	78
5	ANISA CHUSNA YATI	P	40	100
6	ANITA PUTRI RAMADHANTI	P	35	95
7	ANNISA FADILA SUSENA	P	40	88
8	APRILIA SAIVANA	P	28	100
9	AURA NOORMAFAZA	P	35	85
10	DINDA APRILIA	P	45	90
11	DINDA PRATIWI	P	30	85
12	FIRZA IRZAM FATONI	L	35	60
13	HAFID REZKYANDARU	L	60	95
14	HIKAM ARYANEGARA	L	30	95
15	ILHAM AHMAD ADANI	L	35	85
16	KARISA SALSA <mark>B</mark> ILA	P	45	90
17	KHISYA PRADIPTA SUBAGYO	P	60	100
18	LADYA NASTITI INA YATI	Р	50	93
19	MAIDA NASYWA ATHAIL <mark>LA</mark> H	P	33	88
	MARYAM AZZAHROH		43	88
20	ROMADHOONA	P		
21	MEIANDRA RAGIL PINESTHY	P	35	100
	MUHAMMAD KEVIN IRVAN		30	88
22	SAPUTRA	L		
23	MUHAMMAD RIDHO FA UZI	L	30	85
24	MUHAMMAD SURYA ERLANGGA F. V	KSI	¥ 60	100
25	NAUFALHALIEM	L	48	65
26	NINA PRASETYAMI	P	30	95
27	NUGROHO V A V A I	L	A 35	73
28	RAFI BAGAS IMANUDIN	L	38	83
29	RAHMA TRI CAHYANI	P	43	95
30	RIVALDI NUR HIDA YAT	L	33	88
31	SALSA FAATIN ALDHINAR	P	30	88
32	TANYA NAJWA AZZAHRA	P	38	83
33	UMINURKHASANAH	P	50	83
34	VINA APRILIA	P	50	85
35	YUNI FARIDATUN NISA	P	60	93

HASIL TEST KELAS KONTROL

No.	Nama	L/P	Pretest	Posttest
1	AHMADMUHAMMADUMARA.	L	30	58
2	AHMADRIZQI ISMAIL	L	30	85
3	ALAYYA KAYASTA HAMIDI	P	30	88
4	ANANDIKA AGUNG FIRMANSYAH W.	L	45	
5	ANISYA ULFA	P	45	80 78
		P	40	73
7	ANNIDA RAHMANIA SOLIKHAH ARBA'ATUN NUR FADILLA	P	35	83
8	ARDENTYA RESA NOORMADHANI	L	45	80
		P		1
9	A VINA YUSRA ABIDIN	_	28	80
10	CHIKA NEYSA SHAFIRA	P	45	80
11	CINDYTA VIVIN VANIA	P	35	93
12	DAFFA AULIA MURYANSYAH	L	45	68
13	DAMAR PRASASTIREVANDA PUTRI	P	28	75
14	DINDA AZZAHRA FAJAR PUTRI	P	50	83
15	DINDA WULANSARI	P	40	85
16	FAJAR DINI JATITUGASIWI	P	45	80
17	FAJRIANA JORDAN	P	48	93
18	FATIMA AZZAHRA TRIWARI	P	40	88
19	FEBRIA CITRANINGRUM AISA	P	53	80
20	FEBRIYANI RAHAYU	Р	35	73
21	HASNAH HANIFAH RINAR <mark>DI</mark>	P	45	88
22	HA YU JENDRO	L	35	80
23	IRFAN PUTRA RAMADHAN	L	35	75
24	KAILA RAHMATANIA KURNIAWAN	P	30	80
25	MEISHA VABRIZIO HERO	P	35	75
26	MUHAMMAD BADRUS Q.	L	45	83
27	MUHAMMAD FADHLAN HAMIDAN	L	38	80
28	NATASYA DWIKARINA/	ERSI	TY 35	83
29	RAIHAN ACHMAD ARDIANTO	L	45	95
30	RASYID SAKTI SUTAN SAMUDRA	L	38	83
31	REZA YULINDA PUTRI AURELIA	P	40	78
32	RIEKE DHILA HARDIANA	P	40	80
33	SAHLA ADINA YA GANI RESWARA	P	48	85
34	VALIA MAKHAELASARI ARIAS	P	40	80
35	YOLANDA ZALFA SETYANINGTYAS	P	50	78

Lampiran 11. Hasil Angket Kemampuan Berpikir Kritis

HASIL ANGKET KEMAMPUAN BERPIKIR KRITIS

								11/	1 0.	ш	LAT.	101	ZL	1 1	F 10 C 10			and the latest and th	-		נענ	1/1	117.	11/	171	/1 1	10								
															KEI	LAS	EKS	PER	IME	V															
No																	No	Abs	en																
110	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
1	3	3	2	3	3	2	3	3	3	2	3	3	3	4	3	3	3	3	3	2	3	3	3	3	2	4	3	3	3	3	4	3	3	3	4
2	3	2	2	3	4	2	3	3	3	2	3	3	3	3	3	3	2	3	2	2	3	2	2	2	2	3	3	3	3	3	3	3	3	2	3
3	3	3	4	3	4	2	3	3	3	3	3	3	3	3	4	3	4	3	4	3	2	4	4	3	3	3	4	4	3	3	3	3	4	2	4
4	3	3	4	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	3	3	3	3	4	3	3	3	3	4	3	3	2	4
5	3	3	3	3	3	3	3	4	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	3	3	3	3	4	3	3	2	4
6	3	3	3	3	3	2	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	3	3	3	3	4	2	2	3	3	4	3	2	3	3
7	4	3	3	4	4	3	4	4	4	4	4	4	4	3	4	4	4	3	4	3	3	4	4	3	3	3	4	4	3	3	3	3	4	2	4
8	4	3	3	4	4	3	4	4	4	2	4	4	4	3	2	4	4	3	4	3	4	4	4	4	3	3	2	2	3	3	3	3	2	2	4
9	4	3	4	4	3	3	4	3	4	3	4	4	4	3	4	4	3	3	3	3	4	3	3	3	3	3	4	4	3	4	3	3	4	3	3
10	4	3	4	4	3	3	4	3	4	3	4	4	4	3	3	4	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	3	3	4
11	4	3	3	4	3	4	4	3	4	2	4	4	4	3	3	4	3	3/	3	4	3	3	3	3	3	3	3	3	3	3	4	3	3	4	4
12	3	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	3	4	3	3	3	4
13	3	3	4	3	4	4	3	3	3	3	3	3	3	3	3	3	4	3	4	3	4	4	4	4	3	4	3	3	3	3	2	3	3	3	4
14	3	2	4	3	3	4	3	4	3	3	3	3	3	2	3	3	4	3	4	4	4	4	4	3	3	4	3	3	3	3	4	3	3	3	4
15	4	3	3	4	3	3	4	4	4	3	4	4	4	3	2	4	4	3	4	3	4	4	4	3	3	3	2	2	3	3	4	3	2	3	4
16	4	4	3	3	3	3	4	3	4	4	4	3	4	4	4	3	4	_3_	4	3	4	4	4	4	3	3	3	3	3	4	4	3	3	3	4
Total	55	47	52	54	53	47	55	53	55	45	55	54	55	49	49	54	54	48	54	48	52	54	54	50	46	54	48	48	49	50	57	49	48	43	61

SUNAN KALIJAGA YOGYAKARTA

															K	ELA!	S KC	NTF	ROL																
No																	No	Abs	sen																
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
1	2	2	3	2	2	3	2	3	3	3	2	2	2	2	2	4	4	3	2	3	3	3	3	3	3	3	1	2	3	2	3	4	2	2	3
2	3	2	2	3	3	3	3	3	3	3	2	2	2	3	3	4	3	3	3	2	3	3	3	3	3	3	1	2	3	2	3	4	2	2	3
3	4	3	3	3	3	3	4	3	4	3	2	3	4	4	4	3	3	3	4	3	3	3	3	3	3	3	1	3	2	3	3	4	3	3	3
4	3	3	3	3	3	3	3	2	4	2	2	3	4	3	3	4	3	3	4	3	4	3	3	3	3	3	4	3	2	3	3	4	3	3	3
5	3	3	3	3	4	3	3	2	4	2	3	3	3	3	3	4	3	3	3	3	3	3	3	3	3	3	4	3	1	3	3	4	3	3	3
6	3	3	3	2	3	3	3	3	3	3	3	3	2	3	3	4	3	2	3	3	3	3	3	3	3	4	4	2	4	2	4	4	2	4	3
7	4	3	2	3	4	3	4	3	4	3	4	3	3	4	4	3	4	3	4	3	3	3	2	3	4	2	3	3	2	2	2	3	3	2	3
8	3	4	4	3	3	3	3	4	3	4	3	2	3	3	3	2	4	2	3	3	4	3	3	3	3	4	3	2	4	4	4	4	3	3	3
9	4	3	3	3	4	3	4	2	3	2	3	4	3	4	4	1	4	3	4	3	3	3	3	3	4	3	3	3	3	2	3	4	3	3	4
10	4	2	3	3	3	3	4	3	3	3	4	3	2	4	4	4	4	2	3	3	3	3	3	3	4	3	1	2	3	2	3	4	3	3	3
11	4	3	2	3	4	3	4	3	4	3	3	3	3	4	4	4	3	2	3	3	2	3	3	3	2	3	1	3	3	2	3	4	2	3	3
12	4	3	2	3	3	3	4	3	3	3	4	2	3	4	4	3	4	3	4	3	4	3	3	2	3	4	4	2	4	2	4	4	3	3	3
13	4	3	4	3	3	3	4	4	3	4	3	3	3	4	4	2	4	3	4	3	3	3	3	2	4	3	3	3	3	4	3	4	4	3	4
14	3	4	4	3	4	3	4	3	3	3	2	3	3	4	3	2	4	3	2	3	4	3	2	2	4	2	3	3	3	3	2	4	3	3	4
15	3	4	3	3	4	3	4	2	3	2	4	35	T3\	14	131	ARA	/12(3	141	V3E	R3S	BY	3	2	4	2	1	3	2	3	2	3	3	3	3
16	4	4	4	3	3	3	4	2	3	2	3	4	14	4	4	4	4	3	4	3	3	3	3	2	4	4	4	3	4	3	4	4	4	3	3
[otal	55	49	48	46	53	48	57	45	53	45	47	46	47	57	56	51	56	44	54	47	51	48	46	43	54	49	41	42	46	42	49	62	46	46	51
		0 8	8 10		200				e()	8% 2		Y	-)		Y	A	K	A	R		A		- 10	5 70			0 1	0 0		100	6 3	10		

Lampiran 12. Hasil Angket Keterampilan Komunikasi

HASIL ANGKET KETERAMPILAN KOMUNIKASI

·															KE	LAS	EKS	PER	Assessment of	(6)					111										
No																	No	Abs	en																
110	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
1	3	2	2	3	4	3	3	3	3	3	3	3	3	4	2	3	4	2	4	3	2	4	4	2	2	3	2	2	3	3	2	2	2	2	4
2	3	3	3	3	4	3	3	4	3	4	3	3	3	3	3	3	4	3	4	2	4	4	4	3	3	2	3	3	3	4	4	3	3	2	4
3	3	3	4	3	4	3	3	3	3	4	3	3	3	3	2	3	4	4	3	4	4	3	3	3	4	4	2	2	3	4	4	3	2	3	4
4	3	3	3	3	4	4	3	3	3	3	3	3	3	3	3	3	4	3	4	3	4	4	4	3	3	4	3	3	3	4	3	3	3	3	4
5	4	3	4	4	3	3	4	4	4	3	4	4	4	4	-3	4	4	2	4	3	2	4	4	3	4	4	3	4	3	3	4	4	4	4	4
6	3	3	3	3	4	4	3	4	3	4	3	3	3	3	4	3	4	3	4	4	4	4	4	3	4	4	4	4	4	4	4	3	4	4	4
7	4	3	4	4	4	2	4	3	4	3	4	4	4	3	3	4	4	3	4	3	4	4	4	4	4	4	3	3	3	3	3	3	3	3	3
8	3	3	3	3	4	4	3	3	3	3	3	3	3	3	4	3	4	2	4	3	4	4	4	2	4	3	4	4	4	4	3	3	4	3	4
9	4	4	4	3	4	4	3	3	3	4	3	3	3	3	4	3	3	3	3	3	4	3	4	3	3	4	4	3	4	4	4	3	3	4	4
10	3	3	3	3	4	3	3	3	3	4	3	3	3	3	4	3	2	3	2	3	4	2	2	3	3	3	4	4	3	4	3	3	4	4	3
11	3	4	3	4	4	2	3	3	3	4	3	3	3	3	3	3	2	3	2	3	2	2	2	3	4	4	2	2	3	3	3	3	2	3	3
12	3	4	4	3	4	4	3	4	3	4	4	s4	₄	F 4	s ₁ 4	4	14	3	JA	4	4	4	4	3	4	4	4	4	4	4	4	4	4	4	4
Total	39	38	40	39	47	39	38	40	38	43	39	39	39	39	39	39	43	34	42	38	42	42	43	35	42	43	38	38	40	44	41	37	38	39	45
												U		H		N		H	L																

YOGYAKARTA

														KI	ELAS	KC	NTR	OL																
																No	Abs	en																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
3	2	3	4	2	3	3	2	3	2	3	2	2	3	3	4	4	3	3	2	2	3	2	2	4	2	3	2	2	3	2	3	3	2	3
4	3	4	3	4	3	4	2	2	2	4	4	3	4	2	4	3	3	3	3	2	2	2	2	4	4	4	3	4	2	4	4	4	4	3
3	3	3	2	4	3	3	3	3	3	3	3	2	3	3	2	3	3	3	2	3	3	3	3	3	2	3	3	2	3	2	3	2	3	3
4	4	3	3	4	3	4	2	4	2	4	3	3	4	4	3	3	3	3	2	3	3	3	2	3	3	4	3	3	3	3	4	4	3	3
4	3	3	3	3	3	4	2	4	2	3	3	3	4	4	3	3	3	2	2	4	3	2	2	3	2	2	3	2	3	2	4	4	3	4
4	4	4	3	4	2	4	2	4	2	4	4	3	4	4	3	2	33	4	2	4	3	4	3	3	3	4	4	4	3	4	4	4	4	4
4	3	4	3	3	4	4	3	3	3	4	3	4	4	4	3	4	3	4	3	4	2	3	2	4	3	4	3	3	2	3	4	4	2	4
4	4	4	3	4	4	4	2	4	2	4	4	4	4	4	4	4	3	4	3	4	3	4	3	4	3	4	4	3	3	3	4	4	3	4
4	2	3	3	3	4	4	3	3	3	4	3	3	4	4	4	4	3	3	3	3	3	3	3	4	3	3	3	3	2	3	4	3	3	4
2	3	3	3	3	4	2	3	4	3	3	2	3	4	4	4	4	2	3	3	3	3	2	3	3	3	4	3	3	3	3	4	3	3	4
3	2	3	3	3	3	3	3	3	3	3	3	3	3	3	4	3	2	3	3	4	2	2	2	3	2	3	3	2	2	3	4	3	2	2
2	2	2	2	2	3	4	3	4	3	2	4	29	T44	T4	141	_/4/	MAC	- 4	14	V#	R91	T¥	4	2	3	4	4	3	2	3	4	4	2	2
41	35	39	35	39	39	43	30	41	30	41	38	35	45	43	42	41	35	39	32	40	33	34	31	40	33	42	38	34	31	35	46	42	34	40

YOGYAKARTA

Lampiran 13. Hasil Uji Statistika Nilai Kimia

HASIL UJI STATISTIKA

A. DATA PRETEST

1. Uji Normalitas

a. Kelas eksperimen

One-Sam	ple Kolmogorov-Smir	nov Test	
			Pretest
N			35
Normal Parameters a,b	Mean		39,97
	Std. Deviation		11,044
Most Extreme	Absolute		,178
Differences	Positive		,178
	Negative		-,141
Test Statistic			,178
Asymp. Sig. (2-tailed)			,007°
Monte Carlo Sig. (2-	Sig.		,195°
tailed)	99% Confidence	Lower	,185
	Interval	Bound	
		Upper	,206
		Bound	

b. Kelas kontrol

One-Samp	le Kolmogorov-Smirno	ov Test	
			A2
N			35
Normal Parameters a,b	Mean		39,74
	Std. Deviation		6,840
Most Extreme	Absolute		,179
Differences TE ISL	Positive NIVERS	SITY	,127
CILALAN	Negative		-,179
Test Statistic	NALIJA	GA	,179
Asymp. Sig. (2-tailed)	/ A I/ A D 7	F 4	,006°
Monte Carlo Sig. (2-	Sig. KAK	A	,194°
tailed)	99% Confidence	Lower	,183
	Interval	Bound	
		Upper	,204
		Bound	

2. Uji Homogenitas

Test of Homogene	eity of	^f Varia	ances
Levene Statistic	df1	df2	Sig.
3,110	1	68	,082

B. DATA POSTTEST

1. Uji Normalitas

a. Kelas eksperimen I

One-	Sample Kolmogor	ov-Smirnov	Test
			Unstandardized Residual
N			35
Normal	Mean		,0000000
Parameters a,b	Std. Deviation		9,88802858
Most Extreme	Absolute		,169
Differences	Positive		,110
	Negative		-,169
Test Statistic		7_	,169
Asymp. Sig. (2-taile	d)		,013 ^c
Monte Carlo Sig.	Sig.		,241 ^a
(2-tailed)	99% Confidence	Lower	,230
	Interval	Bound	
		Upper Bound	,252

b. Kelas kontrol

One-S	Sample Ko <mark>lm</mark> ogor	ov-Smirno	w Test
			Unstandardized
			Residual
N			35
Normal	Mean		,0000
Parameters a,b	Std. Deviation		7,00564
Most Extreme	Absolute		,172
Differences	Positive	VIIV/EDC	,142
SIAIE	Negative	ALAFIC	-,172
Test Statistic \(\triangle \)	AN KA		,172
Asymp. Sig. (2-taile	ed)	,,,	,010 ^c
Monte Carlo Sig.	Sig. \(\triangle \)	AR7	,218 ^d
(2-tailed)	99% Confidence	Lower	,208
	Interval	Bound	
		Upper	,229
		Bound	

2. Uji Homogenitas

Test of Homogeneity of Variances					
Levene Statistic	df1	df2	Sig.		
2,517	1	68	,117		

3. Uji Hipotesis (Independent T Test)

			I	ndependent	Samples	Test				
		Levene for Equ								
		Varia	nces			t-test	for Equality	of Means		
									95% Co	nfidence
									Interva	l of the
						Sig. (2-	Mean	Std. Error	Diffe	rence
		F	Sig.	T	df	tailed)	Difference	Difference	Lower	Upper
NILAI	Equal variances assumed	2,517	,117	3,473	68	,001	7,114	2,048	3,027	11,202
	Equal variances not assumed			3,473	61,264	,001	7,114	2,048	3,019	11,210

C. DATA ANGKET KEMAMPUAN BERPIKIR KRITIS

1. Uji Normalitas

Tests of Normality							
	Kolmogorov-Smirnov ^a						
	Kelas	Statistic	Df	Sig.			
nilai	a1	,177	35	,007			
	a2	,140	35	,080,			

2. Uji Homogenitas

Test of Homogeneity of Variances					
nilai					
Levene Statistic	df1	df2	Sig.		
1,608	1	68	,209		

3. Uji Mann Whitney

Test Statistic	Sa
	Nilai
Mann-Whitney U	422,500
Wilcoxon W	1052,500
Z	-2,240
Asymp. Sig. (2-tailed)	,025
a. Grouping Variable: kel	las

D. DATA ANGKET KETERAMPILAN KOMUNIKASI

1. Uji Normalitas

			Tests of N	orma	lity			
			Kol	mogo	orov-S	mirn	ov ^a	
	Kel	las	Statistic		Df		Sig.	
nilai	a1		,211		35			,000
	a2		,151		35			,043

2. Uii Homogenitas

Test of Homogeneity of Variances					
nilai	414 14	/ \ _			
Levene Statistic	df1	df2	Sig.		
14,144		68	,000		

3. Uji Hipotesis (Mann Whitney)

Test Statistics ^a				
	Nilai			
Mann-Whitney U	446,000			
Wilcoxon W	1076,000			
Z	-1,969			
Asymp. Sig. (2-tailed)	,049			
a. Grouping Variable: kelas				

Lampiran 14. Kisi-kisi Soal Uji coba

KISI-KISI SOAL UJI COBA

1	Peserta didik dapat mengonversikan jumlah mol dengan jumlah partikel dan massa	Menemukan cara untuk menyelesaikan mas alah	Diberikan beberapa informasi mengenai unsur fosfor. Peserta didik diharapkan dapat menganalisis dan menemukan cara untuk menyelesaikan masalah	C4	Uraian	1
2	Peserta didik dapat mengonversikan jumlah mol dengan volume gas dan massa molar serta volume molar	Analisis data	Diberikan pernyataan mengenai unsur oksigen dalam tubuh manusia. Peserta didik diharapkan dapat menganalisis data untuk menyelesaikan masalah	C4	Uraian	2
3	Peserta didik dapat mengidentifikasi pereaksi pembatas dari suatu reaksi	Menarik kes impulan	Diberikan pernyataan mengenai perhitungan kimia dan pereaksi pembatas. Peserta didik diharapkan dapat mengidentifikasi data untuk menarik kesimpulan dari reaksi yang terjadi.	C4	Uraian	3
4	Peserta didik dapat mengidentifikasi pereaksi pembatas dari suatu reaksi	Evaluasi pemyataan STATE ISLAM	Diberikan beberapa pernyataan mengenai konsep mol dan pereaksi pembatas. Peserta didik diharapkan dapat mengidentifikasi pernyataan yang benar dan salah	C4	Uraian	4
5	Peserta didik dapat mengidentifikasi pereaksi pembatas dari suatu reaksi	Evaluasi pernyataan	Diberikan pernyataan mengenai dua zat yang direaksikan. Peserta didik diharapkan dapat mengidentifikasi pernyataan tersebut, benar atau salah	C4	Uraian	5

Lampiran 15. Soal Uji coba

SOAL UJI COBA

 Fosfor merupakan unsur kimia golongan VA yang berupa unsur non logam. Fosfor biasanya ditemukan dalam batuan fosfat anorganik dan dalam semua sel hidup, tetapi tidak pernah ditemui dalam unsur bebasnya. Berikut ditemukan kelimpahan isotop unsur fosfor di alam:

Isotop	Massa	Kelimpahan di alam (%)
P-15	14,986	96,61
P-16	15,988	3,12
P-17	16,987	0,27

Berapakah jumlah atom yang ada dalam 7,75 gram fosfor? (Ar Fosfor= 31)

- 2. Oksigen merupakan unsur yang memiliki kelimpahan terbesar dalam tubuh manusia, yaitu sekitar 65%. Oleh karena itu, oksigen berkontribusi pada sebagian besar massa tubuh manusia. Dalam suatu keadaan, molekul oksigen dalam tubuh manusia memiliki jumlah partikel 8,75 x 10⁻²³. berapakah volume O₂ jika diukur pada keadaan standar? (Ar O= 16)
- 3. Seorang peserta didik melakukan praktikum dengan mereaksikan 2,7 gram logam aluminium dengan 100 ml HCl 0,6 M menurut reaksi:

$$2Al_{(s)} + 6HCl_{(aq)} \rightarrow 2AlCl_{3(aq)} + 3H_{2(g)}$$

Setelah melakukan perhitungan, peserta didik menyimpulkan bahwa reaksi pembatas dari praktikum ini adalah logam Al. (Ar Al= 27)

Berdasarkan pernyataan di atas, tentukan kesimpulan peserta didik benar atau salah dan jelaskan dengan perhitungan yang telah dipelajari!

4. Suatu bejana direaksikan sebanyak 56 gram gas nitrogen (Ar N=14) dengan 16 gram gas hidrogen (Ar H=1). Reaksi yang terjadi adalah:

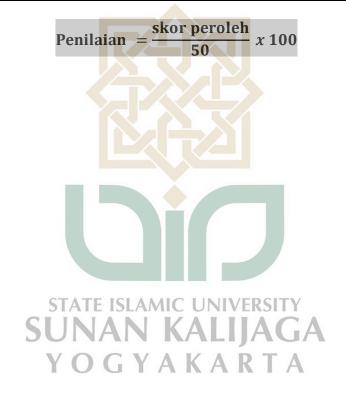
$$N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$$

Berdasarkan pernyataan di atas, beberapa kemungkinan yang terjadi yaitu:

(1) Gas H₂ merupakan pereaksi pembatas

- (2) Mol sisa dari gas N₂ sebanyak 2 mol
- (3) Reaktan/Pereaksi tidak memiliki sisa mol
- (4) Mol NH₃ yang terbentuk sebanyak 4 mol. Pernyataan yang benar ditunjukkan oleh nomor
- 5. Sebanyak 56 gram Fe (Ar= 56) direaksikan dengan 16 gram belerang (Ar= 32) sesuai reaksi: $Fe_{(s)} + S_{(s)} \rightarrow FeS_{(s)}$ Ternyata Fe memiliki mol sisa sebesar 1 mol. Tentukan pernyataan di atas benar atau salah, yang ditunjukkan dengan bukti perhitungan!

Lampiran 16. Kunci Jawaban Soal Uji coba


KUNCI JAWABAN DAN PEDOMAN PESKORAN

No	Kunci Jawaban DAN PEDUMAN PESKURAN Kunci Jawaban	Sko
		r
1.	Identifikasi mas alah: - Fos for merupakan unsur kimia golongan VA yang berupa unsur non logam. - Fos for bias anya ditemukan dalam batuan fosfat anorganik dan dalam semua sel hidup, tetapi tidak pernah ditemui dalam unsur bebasnya - Diketahui: massa atom fos for= 7,75 gram Ar P= 31 Penyelesaian masalah: - Ditanya: jumlah atom P	2
	Jawab:	4
	- MolP= $\frac{massa}{Ar}$ = $\frac{7,75gram}{31}$ = 0,25mol	
	- Jumlah atom= n x P = 0,25 mol x 6,02 x 10^{-23} = 1,5x 10^{-23} atom	4
2.	Identifikasi masalah: - Oksigen merupakan unsur yang memiliki kelimpahan terbesar dalam tubuh manusia, yaitu sekitar 65%. - Diketahui= jumlah partikel 8,75 x 10 ⁻²³ . Ar O= 16 Penyelesaian masalah= - Ditanya= volume O ₂ pada keadaan standar?	2
	- Jawab= $n = \frac{jumlahatom}{P} = \frac{8,75x10^{-23}}{6,02x10^{-23}} = 1,45mol$	4
	V(STP) = nx22, 4 = 1,45molx22, 4 = 32,48L	4

No ·	Kunci Jawaban	Sko r
3.	Identifikasi masalah: - Diketahui= Massa Al= 2,7 gram, Ar Al=27 V HCl= $100 \text{ ml} = 0,1 \text{ L}$ M HCl= $0,6 \text{ M}$ menurut reaksi: $2Al + 6HCl \rightarrow 2AlCl_3 + 3H_2$ - Pernyataan: Pereaksi pembatas= Al Ditanya= pernyataan benar atau salah?	2
	Jawab=n HCl= M x V= 0,6 M x 0,1 L= 0,06 mol $nAl = \frac{massa}{Ar} = \frac{2,7 gram}{27} = 0,1 mol$	4
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4
4.	Identifikasi mas alah - Massa gas N_2 = 56 gram - Massa gas H_2 =16 gram. STATE $N_{2(g)}$ $+$ $3H_{2(g)}$ \rightarrow $2NH_{3(g)}$ ITY - Ditanya= pernyataan yang benar	2

No	Kunci Jawaban	Sko r
	- Jawab= $nN_2 = \frac{massa}{Mr} = \frac{56}{28} = 2mol$ $nH_2 = \frac{massa}{Mr} = \frac{16}{2} = 8mol$ $N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$	4
	M 2 8 R 2 6 4 S - 2 4	
	Pereaksi pembatas= N ₂ Mol sisa N ₂ = tidak ada Pereaksi yang memiliki mol sisa= gas H ₂ Mol NH ₃ yang terbentuk 4 mol	3
	Pernyataan yang benar adalah nomor (4)	1
5.	Identifikasi masalah - Massa Fe= 56 gram Fe (Ar= 56) - Massa S= 16 gram (Ar= 32) $Fe_{(s)} + S_{(s)} \rightarrow FeS_{(s)}$ - Pernyataan= n Fe sisa= 1 mol Ditanya= pernyataan benar atau salah?	2
	Jawab= $nFe = \frac{massa}{Ar} = \frac{56}{56} = 1mol$ $nS = \frac{massa}{Ar} = \frac{16}{32} = 0,5mol$	5

	$Fe_{(s)}$	$+S_{(s)}$	\rightarrow FeS	$S_{(s)}$	3
M	1	0,5			
R	0,5	0,5	0,5		
S	0,5	-	0,5		
M	aleica	Fe seb	anvak 0.5	5 mol (pernyataan salah)	

Lampiran 17. Hasil Analisis Validitas dan Reliabilitas Soal Tes Kemampuan Berpikir Kritis

A. Hasil Analisis Validitas Soal Tes Kemampuan Berpikir Kritis

		Corre	lations	5			
		s1	s2	s3	s4	s5	total
s1	Pearson Correlation	1	,112	,429*	1,000**	-,021	,853**
	Sig. (2-tailed)		,543	,014	,000	,908	,000
	N	32	32	32	32	32	32
s2	Pears on Correlation	,112	1	,205	,112	,148	,361*
	Sig. (2-tailed)	,543		,260	,543	,418	,042
	N	32	32	32	32	32	32
s3	Pears on Correlation	,429*	,205	1	,429*	-,067	,681**
	Sig. (2-tailed)	,014	,260		,014	,717	,000
	N	32	32	32	32	32	32
s4	Pears on Correlation	1,000**	,112	,429*	1	-,021	,853**
	Sig. (2-tailed)	,000	,543	,014		,908	,000
	N	32	32	32	32	32	32
s5	Pears on Correlation	-,021	,148	-,067	-,021	1	,316
	Sig. (2-tailed)	,908	,418	,717	,908		,078
	N	32	32	32	32	32	32
total	Pears on Correlation	,853**	,361*	,681**	,853**	,316	1
	Sig. (2-tailed)	,000	,042	,000	,000	,078	
	N	32	32	32	32	32	32
*. Co	orrelation is significar	t at the 0	.05 leve	el (2-tai	led).		
**.C	Correlation is significa	int at the	0.01 le	vel(2-ta	iled).	·	

B. Hasil Analisis Reliabilitas Soal Tes Kemampuan Berpikir Kritis

5 (erpikir Kritis		Λ	11		A 1		
	Reliability S	Statistics			J/	-//	U/	1
	Cronbach's Alpha	N of Items	K	A	R	T	A	
	,612	5						

Lampiran 18. Hasil Analisis Validitas dan Reliabilitas Angket Kemampuan Berpikir Kritis

A. Hasil Analisis Validitas Angket Kemampuan Berpikir Kritis

Pearson Correlation Sig. (Cailed) N Pearson Correlation Sig. (Ataled) Sig. (Ataled) Sig. (Ataled)	y1 1,000 ,000 36 ,290 ,086 36 ,204 ,232 36 ,696	y2 1,000°, ,000 36 1 36 ,290 ,086 36 ,204 ,232	,086 36 ,290 ,086 36 ,290 ,086 36 1	,204 ,204 ,232 ,36 ,204 ,232 ,36 ,853 ,000 ,36 ,1	,000 36 ,696 ,000 36 ,170 ,323 36	,083 ,083 ,083 ,083 ,083 ,561	y7 1,000 ,000 36 1,000 ,000 36 ,290	,000 ,000 36 1,000 ,000 ,000	,000 36 1,000 ,000 36 1,000 ,000	,000 1,000 ,000 36 1,000	,000 ,000 36 ,931 ,000	y12 1,000 ,000 36 1,000	y13 ,367 ,028 36 ,367 ,028	,000 ,612 ,000 ,612 ,000	y15 ,408 ,013 36 ,408 ,013 36	,000 ,612 ,000 ,612 ,000 36	,963 ,000 36 ,963
Correlation Sig. (2-tailed) N Pearson Correlation	000 36 ,290 ,086 36 ,204 ,232 36	,000 36 1 36 ,290 ,086 36 ,204	,290 ,086 36 ,290 ,086 36 1	,232 36 ,204 ,232 36 ,853 ,000 36	,696 ,000 36 ,696 ,000 36 ,170	,083 36 ,293 ,083 36 ,561	,000 36 1,000 ,000 36	,000 36 1,000 ,000 36	,000 36 1,000	,000 36 1,000	,000 36 ,931	,000 36 1,000	,028 36 ,367	,000 36 ,612	,013 36 ,408	,000 36 ,612	,963 ,000 ,963 ,963
Correlation Sig. (2-tailed) N Pearson Correlation	000 36 ,290 ,086 36 ,204 ,232 36	,000 36 1 36 ,290 ,086 36 ,204	,086 36 ,290 ,086 36 1	,232 36 ,204 ,232 36 ,853 ,000 36	,000 36 ,696 ,000 36 ,170	,083 36 ,293 ,083 36 ,561	,000 36 1,000 ,000 36	,000 36 1,000 ,000 36	,000 36 1,000	,000 36 1,000	,000 36 ,931	,000 36 1,000	,028 36 ,367	,000 36 ,612	,013 36 ,408	,000 36 ,612	,00 3 ,963
Sig. (2-tailed) N Pearson Correlation Correlation	000 36 ,290 ,086 36 ,204 ,232 36	36 1 36 ,290 ,086 36 ,204	,086 36 36 1	,232 36 ,853 ,000 36	,696 ,000 36 ,170	,083 ,083 36 ,561	36 1,000 ,000 36	36 1,000 ,000 36	36 1,000 ,000	36 1,000	,931 ,000	36 1,000 ,000	,367 ,028	,612 ,000	,408 ,013	,612 ,000	,963
N Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N Pearson Correlation	000 36 ,290 ,086 36 ,204 ,232 36	36 1 36 ,290 ,086 36 ,204	,086 36 36 1	,232 36 ,853 ,000 36	,696 ,000 36 ,170	,083 ,083 36 ,561	36 1,000 ,000 36	36 1,000 ,000 36	36 1,000 ,000	36 1,000	,931 ,000	36 1,000 ,000	,367 ,028	,612 ,000	,408 ,013	,612 ,000	,963
Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N Pearson Correlation	000 36 ,290 ,086 36 ,204 ,232 36	36 ,290 ,086 36 ,204	,290 ,086 36 1	,204 ,232 36 ,853** ,000 36	,696 ,000 36 ,170	,083 36 ,561	1,000 ,000 36	,000 ,000 36	,000	1,000	,931	,000	,367	,612	,408	,612	,963
Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N Pearson Correlation	,000 36 ,290 ,086 36 ,204 ,232 36	36 ,290 ,086 36 ,204	,086 36 1	,232 36 ,853 ,000 36	,000 36 ,170	,083 36 ,561	,000	,000	,000	,000	,000	,000	,028	,000	,013	,000	,00
N Pearson Correlation Sig. (2-tailed) N Pearson Correlation	36 ,290 ,086 36 ,204 ,232 36	,290 ,086 36 ,204	36 1 36 .853	,853 ,000 36	,170 ,323	,561°	36	36									
Pearson Correlation Sig. (2-tailed) N Pearson Correlation	,290 ,086 36 ,204 ,232 36	,290 ,086 36 ,204	36	,853 ,000 36	,170	,561**			36						20		
Correlation Sig. (2-tailed) N Pearson Correlation	,086 36 ,204 ,232 36	,086 36 ,204	36 ,853	,000	,323		,290			36	36	36	36	36			36
N Pearson Correlation	36 ,204 ,232 36	,204 ,232	,853**	36		000		,290	,290	,290	,262	,290	,401	,533**	,213	,213	,461
Pearson Correlation	,204	,204	,853**		36	.0001	.086	.086	.086	.086	.123	.086	.015	.001	.212	212	.00
Correlation	,204	,204	,853**			36	36	36	36	36	36	36	36	36	36	36	36
Sig. (2-tailed)	36				,114	,478	,204	,204	,204	,204	,175	,204	,286	,438	,438	,156	,385
	36		.000		.509	.003	,232	232	.232	,232	.306	.232	.091	.008	.008	363	.020
N		36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36
Pearson Correlation		,696	,170	,114	1	,421	,696	,696	,696	,696	,648	,696	,367	,369	,625	,625	,755
Sig. (2-tailed)	.000	.000	.323	.509		.011	.000	.000	.000	.000	.000	.000	.028	.027	.000	.000	.000
N	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36
Pearson	293	.293	.561	.478	421	1	.293	293	293	.293	273	.293	.225	.478	.478	478	.460
Correlation	3,-11-	,	,		1	1					- 1		,			,	,
Sig. (2-tailed)	,083	,083	,000	,003	,011		,083	,083	,083	,083	,108	,083	,187	,003	,003	,003	,005
N	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36
Pearson Correlation	1,000	1,000	,290	,204	,696	,293	1	1,000	1,000	1,000	,931	1,000	,367	,612	,408	,612	,963
Sig. (2-tailed)	,000	,000	,086	,232	,000	,083		,000	,000	,000	,000	,000	,028	,000	,013	,000	,000
N	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36
Pearson Correlation	1,000	1,000	,290	,204	,696	,293	1,000	1	1,000	1,000	,931	1,000	,367	,612	,408	,612	,963
Sig. (2-tailed)	.000	000	.086	.232	.000	.083	.000	1	.000	.000	.000	.000	.028	.000	.013	.000	.000
N	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36
	1,000	1,000	,290	,204	,696	,293	1,000	1,000	1	1,000	,931	1,000	,367	,612	,408	,612	,963
Sig. (2-tailed)	.000	000	086	232	.000	.083	.000	.000		000	.000	.000	.028	.000	.013	.000	.000
N	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36
6.0	1.000	1.000	290	204	.696	293	1.000	1.000	1,000	1	.931	1,000	,367	.612	.408	.612	.963
Correlation		•	1.00	100		1-6				1	100000			(0.0000)	5000		
Sig. (2-tailed)	,000	,000	,086	,232	,000	,083	,000	,000	,000		,000	,000	,028	,000	,013	,000	,000
N	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36
Pearson Correlation	,931	,931	,262	,175	,648	,273	,931	,931	,931	,931	1	,931	,308	,570	,373	,570	904
Sig. (2-tailed)	.000	.000	.123	.306	.000	.108	.000	,000	.000	.000		.000	.067	.000	.025	.000	.000
N	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36
Pearson Correlation	1,000	1,000	,290	204	,696	,293	1,000	1,000	1,000	1,000	,931"	1	,367	,612	,408	,612	,963
Sig. (2-tailed)	.000	.000	.086	232	.000	.083	.000	.000	.000	.000	.000	_	.028	.000	.013	.000	,000
N	36	36	36	36	36	36	_ 36	36	_ 36	. 36	36	36	36	_ 36	36	36	36
Pearson Correlation	,367	,367	,401	,286	,367	,225	367	367	,367	367	,308	367	1	,286	,102	,286	,486

B. Hasil Analisis Reliabilitas Angket Kemampuan Berpikir Kritis

Reliability Statistics									
Cronbach's Alpha	N of Items								
,955	16								

Lampiran 19. Hasil Analisis Validitas dan Reliabilitas Angket Keterampilan Komunikasi

A. Hasil Analisis Validitas Angket Keterampilan Komunikasi

	Correlations													
		x1	x2	x3	x4	x5	x 6	x7	x8	x9	x1 0	x1 1	x1 2	TO TA L
x1	Pears on Corre lation	1	,3 02	,78 3**	,3 02	,78 3**	,1 6 7	,34 2*	,34 2*	,78 3**	,3 42 *	,78 3**	,1 14	,77 8**
	Sig. (2-tailed)		,0 74	,00	,0 74	,00,	,3 3 1	,04	,04	,00,	,0 41	,00 0	,5 08	,00,
	N	36	36	36	36	36	3 6	36	36	36	36	36	36	36
x2	Pears on Corre lation	,3 02	1	,22	,0 47	,22	,2 6 5	,33 7*	,33 7*	,22 9	,4 05 *	,22 9	,1 58	,53 5**
	Sig. (2-tailed)	,0 74		,17 9	,7 84	,17 9	,1 1 8	,04 5	,04 5	,17 9	,0 14	,17 9	,3 57	,00 1
	N	36	36	36	36	36	3	36	36	36	36	36	36	36
x3	Pears on Corre lation	,7 83 **	,2 29	IA	,2 29	1,0 00*	(,0 5 0	,25	,25 5	1,0 00*	7,3/ 19	1,0 00**	,0 89	,62 5**
	Sig. (2-tailed)	,0 00	,1 79		,1 79	,00, 0	,7 7 3	,13 4	,13 4	00,	,0 58	00,00	,6 05	,00,
	N	36	36	36	36	36	3 6	36	36	36	36	36	36	36
x4	Pears on Corre lation	,3 02	,0 47	,22 9	1	,22 9	,2 6 5	,33 7*	,33 7*	,22 9	,1 58	,22 9	,4 05 *	,46 1**

						Corr	elati	ions						
		x1	x2	x3	x4	x5	x 6	x7	x8	x9	x1 0	x1 1	x1 2	TO TA L
	Sig. (2-tailed)	,0 74	,7 84	,17 9		,17 9	,1 1 8	,04 5	,04 5	,17 9	,3 57	,17 9	,0 14	,00 5
	N	36	36	36	36	36	3 6	36	36	36	36	36	36	36
x5	Pears on Corre lation	,7 83 **	,2 29	1,0 00* *	,2 29	1	,0 5 0	,25 5	,25 5	1,0 00* *	,3 19	1,0 00* *	,0 89	,62 5**
	Sig. (2-tailed)	,0 00	,1 79	,00,	,1 79		,7 7 3	,13 4	,13 4	,00,	,0 58	,00,	,6 05	,00,
	N	36	36	36	36	36	3	36	36	36	36	36	36	36
хб	Pears on Corre lation	,1 67	,2 65	,05	,2 65	,05	1	,07	,07	,05 0	,2 73	,05	,3 87 *	,37 6*
	Sig. (2- tailed	,3 31	,1 18	,77 3	,1 18	,77		,68 6	,68 6	,77 3	,1 08	,77 3	,0 20	,02 4
	N	36	36	36	36	36	3 6	36	36	36	36	36	36	36
x7	Pears on Corre lation	,3 42 *	,3 37 *	,25 5	37, 37,	,25 5	,0 7 0	UN AL	1,0 00*	,25 5	7,1/ 69	,25 5	,1 69	,64 3**
	Sig. (2-tailed)	,0 41	,0 45	,13 4	,0 45	,13 4	,6 8 6	F	00,00	,13 4	,3 25	,13 4	,3 25	,00,
	N	36	36	36	36	36	3 6	36	36	36	36	36	36	36
x8	Pears on Corre lation	,3 42 *	,3 37 *	,25 5	,3 37 *	,25 5	,0 7 0	1,0 00**	1	,25 5	,1 69	,25 5	,1 69	,64 3**

	Correlations													
		x1	x2	x3	x4	x5	x 6	x7	x8	х9	x1 0	x1 1	x1 2	TO TA L
	Sig. (2-tailed)	,0 41	,0 45	,13 4	,0 45	,13 4	,6 8 6	,00,		,13 4	,3 25	,13 4	,3 25	,00,
	N	36	36	36	36	36	3 6	36	36	36	36	36	36	36
x9	Pears on Corre lation	,7 83 **	,2 29	1,0 00* *	,2 29	1,0 00*	,0 5 0	,25 5	,25 5	1	,3 19	1,0 00* *	,0 89	,62 5**
	Sig. (2-tailed)	,0 00	,1 79	,00,	,1 79	,00, 0	,7 7 3	,13 4	,13 4		,0 58	,00,	,6 05	,00,
	N	36	36	36	36	36	3	36	36	36	36	36	36	36
x10	Pears on Corre lation	,3 42 *	,4 05 *	,31	,1 58	,31	,2 7 3	,16 9	,16 9	,31 9	1	,31 9	,4 16 *	,61 6**
	Sig. (2-tailed)	,0 41	,0 14	,05 8	,3 57	,05 8	,1 0 8	,32 5	,32 5	,05 8		,05 8	,0 12	,00,
	N	36	36	36	36	36	3 6	36	36	36	36	36	36	36
x11	Pears on Corre lation	,7 83 **	,2 29	1,0	,2 29	1,0 00*	,0 5 0	,25 5	,25 5	1,0 00* *	T,3/ 19	A	,0 89	,62 5**
	Sig. (2- tailed	,0 00	,1 79	,00, 0	,1 79	,00 0	,7 7 3	,13 4	,13 4	,00, 0	,0 58		,6 05	,00,
	N	36	36	36	36	36	3 6	36	36	36	36	36	36	36
x12	Pears on Corre lation	,1 14	,1 58	,08 9	,4 05 *	,08 9	,3 8 7*	,16 9	,16 9	,08 9	,4 16 *	,08 9	1	,49 9**

					(Corr	elati	ons						
		x1	x2	x3	x4	x5	x 6	x7	x8	x9	x1 0	x1 1	x1 2	TO TA L
	Sig. (2-tailed)	,5 08	,3 57	,60 5	,0 14	,60 5	,0 2 0	,32 5	,32 5	,60 5	,0 12	,60 5		,00
	N	36	36	36	36	36	3 6	36	36	36	36	36	36	36
TO TA L	Pears on Corre lation	,7 78 **	,5 35 **	,62 5**	,4 61 **	,62 5**	,3 7 6*	,64 3**	,64 3**	,62 5**	,6 16 **	,62 5**	,4 99 **	1
	Sig. (2-tailed)	,0 00	,0 01	,00,	,0 05	,00,	,0 2 4	,00,00	,00,	,00,	,0 00	,00,	,0 02	
	N	36	36	36	36	36	3 6	36	36	36	36	36	36	36
	**. Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 0.05 level (2-tailed).													
". C	orrefatio	11 1S	sign	incan	t at t	neo.c	is le	vei (2	-tane	u).				

B. Hasil Analisis Reliabilitas Angket Keterampilan Komunikasi

Reliability S	Statistics
Cronbach's Alpha	N of Items
,864	12

SUNAN KALIJAGA Y O G Y A K A R T A

Lampiran 20. Surat Keterangan Validasi

Surat Keterangan Validasi

Setelah membaca instrumen dalam penelitian yang berjudul "Pengaruh Pendekatan STEM Model POE Terhadap Kemampuan Berpikir Kritis Dan Keterampilan Komunikasi Peserta Didik Melalui Pembelajaran Online" yang disusun oleh mahasiswa:

Nama : Mustaqimatul Fitriyah

NIM : 16670039

Prodi : Pendidikan Kimia

Fakultas : Sains dan Teknologi UIN Sunan Kalijaga

Yogyakarta

Maka saya berpendapat dan memberikan saran serta masukan terhadap instrumen penelitian ini sebagai berikut:

.....

Demikian surat keterangan ini dibuat untuk selanjutnya instrumen tersebut dapat digunakan untuk pengambilan data.

Yogyakarta, 25 Februari 2020 Validator,

Surat Keterangan Validasi

Setelah membaca instrumen dalam penelitian yang berjudul "Pengaruh Pendekatan STEM Model POE Terhadap Kemampuan Berpikir Kritis Dan Keterampilan Komunikasi Peserta Didik Melalui Pembelajaran Online" yang disusun oleh mahasiswa:

Nama : Mustaqimatul Fitriyah

NIM : 16670039

Prodi : Pendidikan Kimia

Fakultas : Sains dan Teknologi UIN Sunan Kalijaga

Yogyakarta

Maka saya berpendapat dan memberikan saran serta masukan terhadap instrumen penelitian ini sebagai berikut:

Demikian surat keterangan ini dibuat untuk selanjutnya instrumen tersebut dapat digunakan untuk pengambilan data.

Yogyakarta, 25 Februari 2020 Validator,

STATE ISLAMIC UNIVERSITY
SUNAN KAIAgus Kamaludin, M.Pd.
YOGYA NIP. 19830109201503 1 002

Lampiran 21. Surat Penelitian

PEMERINTAH DAERAH DAERAH ISTIMEWA YOGYAKARTA DINAS PENDIDIKAN, PEMUDA DAN OLAHRAGA BALAI PENDIDIKAN MENENGAH KAB, BANTUL SMAN 2 BANGUNTAPAN

≍આં≍ાના મામાં મામાં મામાં

Giondong, Wirokerten, Banguntapan, Bantul, Yogyakarta Kode Pos 55194 Teip. (0274) 4537322
Website:http://sma2banguntapan.sch.ld Email:sman2banguntapan@gmail.com

SURAT KETERANGAN

Namor: 070/ 0722

Yang bertanda tangan di bawah ini Kepala sekolah SMA Negeri 2 Banguntapan Bantul menerangkan dengan sesungguhnya bahwa:

Nama

: Mustaqimatul Fitriyah

NIM

: 16670039

Prodi

:Pendidikan Kimia

Universitas

: Universitas Islam Negeri Sunan Kalijaga Yogyakarta

Benar-benar Telah melaksanakan penelitian di SMA Negeri 2 Banguntapan Bantul untuk melengkapi persyaratan tugas akhir dalam menyelesaikan studi Sarjana Pendidikan Kimia dengan judul Pengaruh Pendekatan STEM Model POE Terhadap Kemampuan Berpikir Kritis dan Ketrampilan komunikasi Melalui Pembelajaran Online yang dilaksanakan pada tanggal 9 April s.d 13 Mei 2020

Demikian surat keterangan ini dibuat agar dapat digunakan sebagaimana mestinya

Bantul, 13 Juli 2020

Kepala Sekolah,

SUNAN K

181 GIHARTO, S.Pd., M.Pd 1 NIP 19670905 198903 1 011

Lampiran 22. Surat Seminar Proposal

KEMENTERIAN AGAMA UNIVERSITAS ISLAM NEGERI SUNAN KALIJAGA FAKULTAS SAINS DAN TEKNOLOGI

Jl. Marsda Adisucipto Telp. (0274) 540971 Fax. (0274) 519739 Yogyakarta 55281

BERITA ACARA SEMINAR PROPOSAL

Penyelenggaraan Seminar Proposal Mahasiswa

A. Waktu, Tempat dan Status Seminar Proposal:

: Rabu, 24 Juni 2020 1. Hari dan Tanggal 2.Pukul : 10:00 s/d 12:00 WIB : FST-4-409

3. Tempat 4 Status : Utama/Penundaan/Susulan/Mengulang

B. Susunan Tim Seminar Proposal:

No.	Jabatan	Nama	Tanda Tangan
1.	Ketua Sidang	Sidiq Premono	1. Richard
2.	Panguji I	Muhammad Zamhari, S.Pd.Si., M.Sc.	200 14 4

C. Ideutitas Mahasiswa yang diuji:

1.Nama

: MUSTAQIMATUL FITRIYAH

2. Nomor Induk Mahasiswa 3.Program Studi 4 Semester

16670039 : Pendidikan Kimia VIII

5.Program SI

6. Tanda Tangan (Bukti hadir di : Sidang Seminar Proposal)

D. Judul Proposal Tugas Akhir-

: Studi. Komparasi. Pembelajaran Online menggunakan pendekatan Saintifik Model Discovery Learning dengan Pendekatan STEM Model POE terhadap Kemampuan Berpikir Kritis dan keterampilan komunikasi Siswa pada Materi Stoikiometri

E. Pembimbing/Promotor;

1. Sidiq Premono F. Keputusan Sidang

Luhis/Tidak luhis dengan perbaikan

2. Predikat Kelulusan

3. Konsultasi Perbaikan a

STATE ISLAMICY OF THE 2000 SIT

Lampiran 23. Curriculum Vitae

DATA DIRI

Nama : Mustaqimatul Fitriyah

Tempat, Tgl Lahir : Cilacap, 24 Januari 1998

Jenis Kelamin : Perempuan

Kewarganegaraan : Indonesia

Agama : Islam

Alamat : Jl. Madaris 177 RT 01/11

Karangjati, Sampang, Cilacap

Telepon : 085725626983

Email : mustaqimatul.fitriyah@gmail.com

PENDIDIKAN

2004-2010 SDN Karangjati 04

2010-2013 SMPN 1 Sampang

2013-2016 SMAN 2 Purwokerto

2016-2020 STATE ISLA UIN Sunan Kalijaga Yogyakarta

PENGALAMAN ORGANISASI

2017-2018 Koperasi Mahasiswa UIN Sunan

Kalijaga

2018-2019 Klub Analisis Keuangan Kopma

UIN Sunan Kalijaga

2018-2019 Dewan Eksekutif Mahasiswa