Noorkhaliza Maulidyani Safira, NIM.: 21106010072 (2025) KETEPATAN KLASIFIKASI STATUS STUNTING PADA BALITA MENGGUNAKAN METODE REGRESI LOGISTIK BINER DAN CLASSIFICATION AND REGRESSION TREE (CART) BERDASARKAN NILAI F1-SCORE (STUDI KASUS : KASUS STUNTING DI PAPUA TENGAH TAHUN 2023). Skripsi thesis, UIN SUNAN KALIJAGA YOGYAKARTA.
|
Text (KETEPATAN KLASIFIKASI STATUS STUNTING PADA BALITA MENGGUNAKAN METODE REGRESI LOGISTIK BINER DAN CLASSIFICATION AND REGRESSION TREE (CART) BERDASARKAN NILAI F1-SCORE (STUDI KASUS : KASUS STUNTING DI PAPUA TENGAH TAHUN 2023))
21106010072_BAB-I_IV-atau-V_DAFTAR-PUSTAKA.pdf - Published Version Download (7MB) | Preview |
|
|
Text (KETEPATAN KLASIFIKASI STATUS STUNTING PADA BALITA MENGGUNAKAN METODE REGRESI LOGISTIK BINER DAN CLASSIFICATION AND REGRESSION TREE (CART) BERDASARKAN NILAI F1-SCORE (STUDI KASUS : KASUS STUNTING DI PAPUA TENGAH TAHUN 2023))
21106010072_BAB-II_sampai_SEBELUM-BAB-TERAKHIR.pdf - Published Version Restricted to Registered users only Download (13MB) | Request a copy |
Abstract
Stunting is a chronic nutritional problem in toddlers that has long-term effects on physical growth, cognitive development, and future productivity. Central Papua is recorded as the province with the highest stunting prevalence in Indonesia in 2023, at 39.4%. This study aims to identify variables influencing stunting incidence and compare the accuracy of classification using Binary Logistic Regression and Classification and Regression Tree (CART) methods based on F1-score values. The data used were sourced from the 2023 Indonesian Health Survey obtained from the Center for Data and Information Technology of the Indonesian Ministry of Health, with a total sample of 401 toddlers from six districts in Central Papua. Data processing and analysis were conducted using RStudio software. Stunting status was determined based on the z-score of the height-for-age index (HAZ) calculated using the WHO Anthro software. The analysis results showed that out of 11 predictor variables, only age and height were significant predictors of stunting. The F1-score values for the Binary Logistic Regression method and the CART method are 95.73% and 90.38%, respectively. Thus, the Binary Logistic Regression method is more optimal in identifying factors influencing stunting in infants in Central Papua in 2023.
| Item Type: | Thesis (Skripsi) |
|---|---|
| Additional Information / Supervisor: | Pipit Pratiwi Rahayu, S.Si., M.Sc. dan Muhamad Rashif Hilmi, S.Si., M.Sc |
| Uncontrolled Keywords: | Stunting, Regresi Logistik Biner, CART, Klasifikasi |
| Subjects: | 500 Sains Murni > 510 Mathematics (Matematika) |
| Divisions: | Fakultas Sains dan Teknologi > Matematika (S1) |
| Depositing User: | Muh Khabib, SIP. |
| Date Deposited: | 27 Feb 2023 14:49 |
| Last Modified: | 11 Aug 2025 13:32 |
| URI: | http://digilib.uin-suka.ac.id/id/eprint/56646 |
Share this knowledge with your friends :
Actions (login required)
![]() |
View Item |
