

SKRIPSI

RANCANG BANGUN EKSTENSI VISUAL STUDIO CODE

(VSCODE) TERINTEGRASI AI UNTUK GENERASI UNIT

TEST

Sebagai salah satu syarat untuk memperoleh gelar Sarjana Komputer (S.Kom)

Oleh:

FANSURI FADEL FITRAH PRAKON

NIM: 21106050091

PROGRAM STUDI INFORMATIKA

FAKULTAS SAINS DAN TEKNOLOGI

UNIVERSITAS ISLAM NEGERI SUNAN KALIJAGA

YOGYAKARTA

2025

i

PENGESAHAN TUGAS AKHIR

ii

SURAT PERSETUJUAN TUGAS AKHIR

iii

SURAT PERNYATAAN KEASLIAN

iv

MOTO

"Ilmu bukanlah yang dihafal, tetapi yang memberi manfaat."

– (Imam Syafi’i)

v

INTISARI

Pengujian perangkat lunak merupakan tahapan krusial dalam pengembangan

sistem untuk menjamin kualitas dan keandalan aplikasi. Namun, proses penulisan

unit test secara manual masih memerlukan waktu dan usaha yang besar, sehingga

sering kali menjadi beban bagi pengembang. Penelitian ini bertujuan untuk

merancang dan membangun sebuah ekstensi Visual Studio Code bernama Unittest

Generator yang terintegrasi dengan kecerdasan buatan berbasis Large Language

Model (LLM) melalui Groq API dan OpenRouter API guna mengotomatisasi

proses generasi unit test untuk berbagai bahasa pemrograman, yaitu Python,

JavaScript, dan Java. Metode pengembangan yang digunakan adalah Extreme

Programming (XP) yang dipadukan dengan pendekatan Research and Development

(R&D) melalui dua iterasi pengembangan.

Hasil pengujian pada iterasi kedua menunjukkan bahwa seluruh kebutuhan

fungsional sistem telah terpenuhi dengan baik. Evaluasi kualitas unit test yang

dihasilkan menunjukkan nilai line coverage pada kisaran 85–92% dan mutation

score sebesar 70–86%, yang mengindikasikan efektivitas unit test dalam

mendeteksi kesalahan pada kode sumber. Selain itu, pengujian berbasis metrik

BLEU dan ROUGE menunjukkan kesesuaian struktur dan substansi unit test

terhadap referensi yang digunakan. Dari sisi performa, sistem mampu

menghasilkan unit test dengan waktu respons rata-rata 4–8 detik, yang jauh lebih

efisien dibandingkan penulisan unit test secara manual. Berdasarkan hasil tersebut,

dapat disimpulkan bahwa ekstensi Unittest Generator mampu meningkatkan

efisiensi, kualitas, dan produktivitas pengujian perangkat lunak, serta berpotensi

menjadi solusi praktis dalam mendukung adopsi AI pada proses pengujian di

lingkungan pengembangan modern.

Kata kunci: Generasi Unit Test, Ekstensi VSCode, Large Language Model,

Otomatisasi Pengujian, Extreme Programming.

vi

ABSTRACT

Software testing is a critical phase in the software development lifecycle to

ensure system quality and reliability. However, manual unit test writing remains

time-consuming and effort-intensive, often becoming a burden for developers. This

study aims to design and develop a Visual Studio Code extension named Unittest

Generator, integrated with artificial intelligence based on Large Language Models

(LLMs) through Groq API and OpenRouter API, to automate unit test generation

for multiple programming languages, namely Python, JavaScript, and Java. The

development process applies the Extreme Programming (XP) methodology

combined with a Research and Development (R&D) approach across two

development iterations.

The testing results in the second iteration indicate that all functional

requirements of the system have been successfully fulfilled. The quality evaluation

of the generated unit tests shows line coverage ranging from 85–92% and mutation

scores between 70–86%, indicating that the generated tests are effective in

detecting faults within the source code. Furthermore, evaluation using BLEU and

ROUGE metrics demonstrates a strong structural and semantic alignment between

the generated unit tests and reference implementations. In terms of performance,

the system achieves an average unit test generation time of 4–8 seconds, which is

significantly faster than manual test creation. Based on these results, this research

concludes that the Unittest Generator extension effectively improves testing

efficiency, quality, and developer productivity, and serves as a practical solution to

support AI adoption in modern software testing workflows.

Key words: Unit Test Generation, VSCode Extension, Large Language Model, Test

Automation, Extreme Programming

vii

KATA PENGANTAR

Puji syukur selalu panjatkan ke kehadirat Allah SWT atas berkat dan rahmat-

Nya, penulis dapat menyelesaikan penelitian ini yang berjudul “Rancang Bangun

Ekstensi Visual Studio Code (VSCode) Terintegrasi AI untuk Otimatisasi Unit test”

dengan lancar. Tak lupa sholawat serta salam senantiasa tercurahkan kepada

baginda Nabi Muhammad SAW, yang telah memberikan syafaat teladan baik bagi

umatnya dalam menuntut ilmu dan mengamalkannya.

Tentunya selama proses mengerjakan tugas akhir ini penulis tidak sendirian.

Banyak dukungan dari berbagai pihak dalam bentuk semangat, bimbingan dan

kontribusi selama proses penyusunan. Oleh karena itu penulis mengucapkan terima

kasih yang sebesar-besarnya kepada:

Bapak Prof. Noorhaidi Hasan, S.Ag., M.A., M.Phil., Ph.D., selaku Rektor

Universitas Islam Negeri Sunan Kalijaga Yogyakarta.

Ibu Prof. Dr. Dra. Hj. Khurul Wardati, M.Si., selaku Dekan Fakultas Sains dan

Teknologi Universitas Islam Negeri Sunan Kalijaga Yogyakarta.

Bapak Muhammad Mustakim, S.T., M.T., selaku Ketua Program Studi Informatika

Fakultas Sains dan Teknologi Universitas Islam Negeri Sunan Kalijaga

Yogyakarta.

Bapak Ir. Aulia Faqih Rifa’I, M.Kom. selaku Dosen Pembimbing Tugas Akhir yang

telah bersedia meluangkan waktunya untuk memberikan arahan serta bimbingan

selama proses mengerjakan tugas akhir.

Seluruh Dosen dan Karyawan Program Studi Informatika UIN Sunan

Kalijaga yang telah kontribusinya selama proses menempuh pendidikan di bangku

perkuliahan.

Kedua orang tua penulis Bpk. Muhammad Idris dan Ibu Saud Muhammad

yang senantiasa memberikan dukungan, kasih sayang dan pembelajaran yang

berharga sehingga penulis bisa berada di posisi saat ini.

Kaka penulis Virasuci Widyastuti yang telah menemani perjuangan penulis selama

proses perkuliahan dari awal 2021 hingga saat ini.

viii

Kaka penulis Nona Rosmiyati yang juga senantiasa memberikan dukungan,

kasih sayang, serta pembelajaran berharga bagi menulis sehingga penulis senantiasa

mampu menghadapi setiap kendala hadir.

Teman teman seperjuangan penulis, Hirzil, Rizal, Ihfan, Hanif Anggara, Rohman,

Alega, Didit, teman-teman dari program studi informatika angkatan 2021 yang

telah membersamai penulis dalam proses perkuliahan.

Penulis menyadari bahwa penyusunan tugas akhir ini masih banyak

kekurangan dan keterbatasan. Oleh karena itu penulis mengharapkan semoga tugas

akhir ini dapat memberikan manfaat dan kontribusi bagi pengembang pada bidang

Informatika, serta menjadi referensi yang berguna bagi pembaca.

Yogyakarta, 10 Desember 2025

Penulis

Fansuri Fadel Fitrah Prakon

NIM.21106050091

ix

DAFTAR ISI

PENGESAHAN TUGAS AKHIR ... i

SURAT PERSETUJUAN TUGAS AKHIR ... ii

SURAT PERNYATAAN KEASLIAN.. iii

MOTO .. iv

INTISARI .. v

ABSTRACT ... vi

KATA PENGANTAR .. vii

DAFTAR ISI .. ix

DAFTAR GAMBAR ... xi

DAFTAR TABEL ... xii

BAB I PENDAHULUAN ... 1

1.1 Latar Belakang .. 1

1.2 Rumusan Masalah ... 3

1.3 Tujuan Penelitian .. 3

1.4 Batasan Masalah.. 3

1.5 Manfaat Penelitian .. 4

BAB II TINJAUAN PUSTAKA ... 5

2.1 Pengujian Perangkat Lunak... 5

2.2 Unit Test .. 6

2.3 Large Language Model (LLM) ... 6

2.4 Visual Studio Code (VSCode) dan Ekstensi ... 8

2.5 Groq API ... 9

2.6 OpenRouter API .. 10

2.7 Test Quality Metics ... 10

2.7.1 Metrik Code Coverage .. 11

2.7.2 Mutation Score .. 11

x

2.7.3 Structural Quality Metric .. 12

2.8 Extreme Programming .. 12

2.9 Unified Modeling Language ... 13

BAB III METODOLOGI PENELITIAN.. 15

3.1 Metode Penelitian.. 15

3.2 Tahapan Pengembangan.. 17

BAB IV PERANCANGAN DAN IMPLEMENTASI .. 19

4.1 Gambaran Umum Sistem .. 19

4.2 Itersai Pertama ... 19

4.2.1 Iterasi Pertama: Perencanaan (Planning) 20

4.2.2 Iterasi Pertama: Perancangan (Design) ... 24

4.2.3 Iterasi Pertama: Penerapan (Coding) .. 30

4.2.4 Iterasi Pertama: Pengujian (Testing) ... 34

4.2.5 Iterasi Pertama: Refactoring .. 35

4.3 Iterasi Kedua ... 37

4.3.1 Iterasi Kedua: Perencanaan (Planning) ... 37

4.3.2 Iterasi Kedua: Perancangan (Design) .. 39

4.3.3 Iterasi Kedua: Penerapan (Coding) ... 52

4.3.4 Iterasi Kedua: Pengujian (Testing) .. 60

4.3.5 Iterasi Kedua: Refactoring .. 75

BAB V KESIMPULAN DAN SARAN .. 77

5.1 Kesimpulan ... 77

5.2 Saran .. 77

DAFTAR PUSTAKA ... 79

xi

DAFTAR GAMBAR

Gambar 4.1 Diagram Arsitektur Sistem .. 25

Gambar 4.2 Class Diagram Iterasi Pertama .. 26

Gambar 4.3 Sequence Diagram Iterasi Pertama ... 28

Gambar 4.4 Desain UI Iterasi Pertama ... 29

Gambar 4.5 Implementasi UI Dasar ... 31

Gambar 4.6 Artitektur Diagram Iterasi Kedua .. 41

Gambar 4.7 Class Diagram Iterasi Kedua ... 43

Gambar 4.8 Sequence Diagram (GenerateTest) Iterasi Kedua 45

Gambar 4.9 Sequence Diagram (Analisis Unit Test Otomatis) Iterasi Kedua 46

Gambar 4.10 Sequence Diagram (Perhitungan Code Coverage) 47

Gambar 4.11 Sequence Diagram (Menyimpan File) .. 48

Gambar 4.12 Desain UI Keadaan Awal .. 50

Gambar 4.13 Panel Option Iterasi Kedua ... 51

Gambar 4.14 Implementasi UI Awal .. 53

Gambar 4.15 Implementasi Panel Option ... 54

Gambar 4.16 Popup setelah Tombol File Diklik .. 55

Gambar 4.17 Group of Language.. 58

xii

DAFTAR TABEL

Tabel 1.1 Tools Yang Digunakan Dalam Pengujian Unit....................................... 6

Tabel 4.1 Kebutuhan Fungsional Sistem Iterasi Pertama 21

Tabel 4.2 Perencanaan Sumber Daya.. 22

Tabel 4.3 Hasil Pengujian Iterasi Pertama .. 34

Tabel 4.4 Refactoring Iterasi Pertama ... 36

Tabel 4.5 Kebutuhan Fungsional Iterasi Kedua .. 38

Tabel 4.6 Hasil Pengujian Fungsional Iterasi Kedua .. 61

Tabel 4.7 Hasil Pengujian Code Coverage ... 62

Tabel 4.8 Hasil Pengujian Mutation ... 64

Tabel 4.9 Hasil Pengujian BLEU .. 65

Tabel 4.10 Hasil Pengujian Menggunakan Metrik ROUGE 68

Tabel 4.11 Hasil Pengujian Exact Match .. 70

Tabel 4.12 Hasil Pengujian Performa Model .. 71

Tabel 4.13 Hasil Perbandingan Manual dan Otomatis Test 74

1

BAB I

PENDAHULUAN

1.1 Latar Belakang

Dalam beberapa tahun terakhir, kemajuan teknologi kecerdasan buatan (AI)

telah mengubah proses pengembangan perangkat lunak, terutama pada tahap yang

krusial yaitu pengujian untuk menjamin kualitas sistem. Melibatkan AI dalam

pengujian terbukti ampuh dalam meningkatkan efisiensi, akurasi, dan cakupan

pengujian secara signifikan. Namun, adopsi teknologi ini di industri nyatanya masih

terbatas. Hal ini disebabkan adanya kendala teknis dan sulit dalam validasi hasil

yang mengakibatkan pemanfaatan AI untuk generasi test case, analisis kode, dan

otomatisasi cerdas menjadi tidak optimal [1]. Temuan tersebut selaras dengan

servey yang dilakukan industri Tricentis (2024), di mana meskipun 60% profesional

pengujian menganggap AI sebagai investasi strategis, namun masih banyak

organisasi yang masih berada di tahap eksplorasi awal [2]. Alasannya adalah pada

proses pembuatan skripnya yang membutuhkan waktu yang cukup lama. Seorang

pengembang menghabiskan hampir 15,8% waktu mereka untuk menulis test, dan

42,72% untuk aktivitas terkait pengujian (termasuk debugging dan perbaikan) [3].

Hal ini menjadi beban manual bagi para pengembang untuk melakukan pengujian

dengan unit test. Jadi, terlihat jelas bahwa ada perbedaan antara kemampuan besar

AI dan cara penerapannya dalam otomatisasi pengujian, sebuah situasi yang

memerlukan penelitian yang lebih lanjut.

Memperhatikan kesenjangan tersebut, penting untuk mencari strategi

penerapan yang lebih efektif. Salah satu peluang besar terletak pada tren

perkembangan ekosistem yang kini bergerak menuju cara kerja extension-in-IDE.

Dalam pendekatan ini, teknologi baru seperti kecerdasan buatan bisa langsung

terintegrasi ke dalam pekerjaan para pengembang melalui alat bantu ekstensi.

Visual Studio Code (VSCode), sebagai salah satu IDE yang paling banyak

digunakan dan bisa diatur sesuai kebutuhan, menjadi platform yang cocok untuk

pendekatan ini. Dirancang dengan ekstensibilitas sebagai prinsip inti, hampir setiap

2

aspek VSCode dari antarmuka hingga pengalaman pengeditan dapat dikustomisasi

dan ditingkatkan melalui API Ekstensi. Bahkan, banyak fitur inti yang dibangun

sebagai ekstensi yang memanfaatkan API tersebut [4]. Perkembangan ini menjadi

angin segar bagi pengembang untuk menghadirkan solusi pengujian berbasis AI

secara lebih langsung dan kontekstual, berpotensi mengatasi kendala teknis dan

adaptasi yang diidentifikasi dalam penelitian sebelumnya, sekaligus mewujudkan

investasi strategis yang diharapkan oleh para pengembang profesional.

Oleh karena itu, integrasi teknologi AI secara langsung ke dalam IDE seperti

Visual Studio Code (VSCode) tidak lagi terbatas pada konsep, tetapi telah didukung

oleh kematangan platform AI khusus. Kemunculan platform AI yang menyediakan

API seperti Groq API dan OpenRouter menjadi kunci dalam realisasi ide ini. Groq

API menawarkan pemrosesan bahasa alami untuk pembuatan dan pengujian kode,

sementara OpenRouter API menyediakan akses terpadu dan efisien ke berbagai

model AI generatif yang mutakhir [5], [6]. Dengan memanfaatkan kemampuan

kedua teknologi ini di dalam ekosistem ekstensi Visual Studio Code (VSCode),

dapat diwujudkan sistem generasi unit test yang diotomatisasi. Diharapkan sistem

ini tidak hanya dapat mengatasi kendala kecepatan dan validasi, tetapi juga mampu

beradaptasi dengan konteks kode spesifik dan gaya pengkodingan masing-masing

pengembang, sehingga menjawab langsung tantangan adopsi yang diungkapkan

dalam penelitian sebelumnya.

Berdasarkan landasan tersebut, urgensi penelitian ini semakin

jelas: menghadirkan solusi praktis yang langsung menjawab akar masalah

rendahnya efisiensi dan adopsi otomatisasi pengujian. Penelitian ini bertujuan

merancang dan membangun sebuah ekstensi Visual Studio Code yang

memanfaatkan Groq dan OpenRouter API untuk mengotomatisasi generasi unit

test. Dengan pendekatan "extension-in-IDE" yang didukung layanan AI khusus,

solusi ini diharapkan dapat secara langsung mengatasi kendala teknis dan

validasi yang diidentifikasi sebelumnya, sehingga berkontribusi dengan cara: 1)

Mempercepat proses pengujian secara signifikan; 2) Mengurangi beban

manual pengembang dalam menulis test case; dan 3) Meningkatkan cakupan serta

kualitas pengujian perangkat lunak.

3

Dengan demikian, urgensi penelitian tidak hanya terletak pada inovasi

integrasi teknologinya, tetapi lebih pada perannya sebagai jembatan yang

menghubungkan potensi AI dari ranah akademis dan konseptual dengan alur kerja

nyata di industri pengembangan perangkat lunak modern.

1.2 Rumusan Masalah

1. Bagaimana cara merancang dan mengembangun ekstensi Visual Studio

Code (VSCode) yang mampu mengintegrasikan AI untuk menghasilkan

unit test untuk berbagai bahasa pemrograman?

2. Bagaimana kualitas skrip pengujian yang dihasilkan oleh Ekstensi?

1.3 Tujuan Penelitian

Tujuan dari penelitian ini adalah sebagai berikut:

1. Merancang dan membangun ekstensi Visual Studio Code yang terintegrasi

dengan Groq dan Openrouter API sebagai sarana otomatisasi dalam

pembuatan unit test.

2. Mengevaluasi kualitas skrip unit test yang berhasil di generate oleh ekstensi.

1.4 Batasan Masalah

Agar penelitian ini lebih terarah dan fokus, maka ruang lingkup penelitian

dibatasi pada beberapa aspek berikut:

1. Lingkup Pengembangan:

Penelitian ini hanya berfokus pada pengembangan ekstensi Visual Studio

Code (VSCode) yang berfungsi untuk mengotomatisasi proses pembuatan unit test.

Ekstensi ini tidak terintegrasi dengan IDE lain seperti PyCharm, Intellij IDEA, atau

Eclipse.

2. Teknologi yang digunakan:

Kecerdasan buatan yang digunakan dalam penelitian ini terbatas pada Groq

dan Openrouter API sebagai sumber pemrosesan LLM untuk menghasilkan kode

4

unit test. Penelitian ini tidak membahas atau membandingkan performa dengan API

AI lainnya seperti OpenAI API, Gemini API, atau Mistral API.

3. Jenis pengujian:

Penelitian ini berfokus pada pembuatan dan pengujian unit test yang bersifat

fungsi atau kelas. Pengujian integrasi (Integration Testing), system testing, atau

performance testing tidak termasuk kedalam cakupan penelitian.

4. Evaluasi sistem:

Evaluasi dilakukan secara terbatas pada aspek fungsionalitas, kualitas hasil

generasi unit test, perbandingan antara manual dan otomatis testing dan performa

sistem tanpa melakukan analisis mendalam seperti pada aspek keamanan data dan

lain-lain.

5. Lingkungan implementasi:

Kegiatan merancang dan membangun serta proses pengujian ekstensi

dilakukan pada lingkungan pengembangan Visual Studio Code (VSCode) dengan

dukungan sistem operasi Windows 11.

1.5 Manfaat Penelitian

Manfaat penelitian ini adalah membantu pengembang dalam meningkatkan

efisiensi dan akurasi pembuatan unit test, serta memberikan kontribusi akademik

berupa penerapan Groq dan OpenRouter API dalam konteks software testing

berbasis IDE Extension.

77

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil pengujian dan evaluasi yang dipaparkan pada bab

sebelumnya, dapat disimpulkan bahwa ekstensi Unittest Generator yang

dikembangkan telah berfungsi secara optimal baik dari sisi fungsionalitas, kualitas

hasil unit test, maupun performa sistem. Seluruh kebutuhan fungsional pada iterasi

pertama dan kedua berhasil dipenuhi, yang ditunjukkan melalui pengujian black-

box dengan hasil pass pada seluruh skenario. Pada aspek kualitas unit test, hasil

pengujian menunjukkan bahwa unit test yang dihasilkan oleh sistem memiliki

tingkat line coverage yang tinggi, berada pada rentang 85–92%, serta mutation

score antara 70–86%, yang mengindikasikan bahwa test yang dihasilkan efektif

dalam mendeteksi perubahan perilaku kode. Evaluasi berbasis metrik BLEU dan

ROUGE juga menunjukkan kesesuaian struktur dan substansi unit test terhadap

referensi, sehingga memperkuat validitas hasil generasi kode. Dari sisi performa,

waktu rata-rata generasi unit test berada pada kisaran 4–8 detik, yang secara

signifikan lebih cepat dibandingkan penulisan unit test secara manual. Selain itu,

perbandingan antara manual testing dan otomatis testing menunjukkan efisiensi

waktu yang jauh lebih tinggi tanpa mengorbankan kualitas pengujian. Dengan

demikian, hasil pengujian pada Bab IV membuktikan bahwa integrasi LLM melalui

ekstensi Visual Studio Code tidak hanya layak secara teknis, tetapi juga efektif

sebagai solusi praktis untuk meningkatkan efisiensi dan kualitas proses pengujian

perangkat lunak.

5.2 Saran

Berdasarkan hasil penelitian dan pengembangan yang telah dilakukan,

berikut adalah beberapa rekomendasi untuk pengembangan lebih lanjut:

1. Implementasi Mutation Testing Terintegrasi: Menambahkan mutation

testing langsung dalam ekstensi untuk menilai efektivitas unit test secara

78

lebih akurat. Hal ini akan memberikan feedback yang lebih komprehensif

kepada pengguna daripada hanya mengandalkan estimasi code coverage.

2. Pengembangan Test Repair System: Mengembangkan fitur otomatis

untuk memperbaiki unit test yang gagal atau memiliki efektivitas rendah.

Sistem ini dapat menganalisis kegagalan test dan merekomendasikan atau

secara otomatis menghasilkan perbaikan berbasis LLM.

3. Adaptive Prompt Engineering: Mengembangkan model prompt yang

dapat beradaptasi secara otomatis berdasarkan karakteristik kode

pengguna, kompleksitas fungsi, dan pola pengembangan yang spesifik

untuk meningkatkan relevansi dan kualitas test yang dihasilkan.

4. Meningkatkan tampilan visual laporan kualitas, misalnya melalui

grafik atau heatmap coverage dan juga grafik untuk quality metric yang

diterapkan.

Dengan menerapkan saran-saran tersebut, penelitian ini bisa diperluas

menjadi solusi pengujian yang lebih kuat, menyeluruh, dan bermanfaat bagi para

pengembang perangkat lunak di seluruh dunia.

79

DAFTAR PUSTAKA

[1] K. Karhu, J. Kasurinen, and K. Smolander, “Expectations vs Reality -- A

Secondary Study on AI Adoption in Software Testing,” pp. 1–26, 2025.

[2] Tricentis, “Results from the 2024 Techstrong Research and Tricentis

survey,” 2024.

[3] E. Daka and G. Fraser, “A Survey on Unit Testing Practices and Problems”.

[4] V. S. Code, “Extension API.”

[5] Groq, “Groq Documentation.” https://console.groq.com/docs

[6] Openrouter, “Openrouter Docs.”

[7] Z. Yuan et al., “Evaluating and Improving ChatGPT for Unit Test

Generation,” vol. 1, no. July, pp. 1–24, 2024.

[8] T. Informatika, I. Teknologi, and S. Nopember, “PENGUJIAN

PERANGKAT LUNAK DENGAN MENGGUNAKAN MODEL

BEHAVIOUR UML Waskitho Wibisono , Fajar Baskoro,” pp. 43–50.

[9] A. N. Hasibuan and T. Dirgahayu, “Pengujian dengan Unit Testing dan Test

case pada Proyek Pengembangan Modul Manajemen Pengguna.”

[10] N. Q. Dwiharani, Y. Wibisono, and Y. Wihardi, “Penerapan Large Language

Models Dalam Pembaruan Artikel Biografi Wikipedia,” vol. 4, no. 2, pp.

804–813, 2025.

[11] E. Nijkamp et al., “CODEGEN: AN OPEN LARGE LANGUAGE MODEL

FOR CODE WITH MULTI-TURN PROGRAM SYNTHESIS,” pp. 1–25,

2023.

[12] S. Bhatia, T. Gandhi, D. Kumar, and P. Jalote, “Unit Test Generation using

Generative AI : A Comparative Performance Analysis of Autogeneration

Tools,” Proc. - 2024 Int. Work. Large Lang. Model. Code, LLM4Code 2024,

pp. 54–61, 2024, doi: 10.1145/3643795.3648396.

[13] J. Jiang, F. Wang, J. Shen, S. Kim, and S. Kim, “A Survey on Large

Language Models for Code Generation,” J. ACM, vol. 37, no. 4, pp. 1–70,

2018.

[14] S. Chodarev, “Visual augmentation of source code editors: A systematic

mapping study,” vol. 49, pp. 46–59, 2018.

80

[15] E. Cal, T. Fulcini, R. Coppola, L. Laudadio, M. Torchiano, and P. Torino,

“A Prototype VS Code Extension to Improve Web Accessible

Development”.

[16] Microsoft, “Start developing extensions in Visual Studio,” 2024.

https://learn.microsoft.com/en-us/visualstudio/extensibility/starting-to-

develop-visual-studio-

extensions?view=visualstudio&source=recommendations (accessed Nov.

16, 2025).

[17] D. Athanasiou, A. N. Member, J. V. Member, and I. C. Society, “Test Code

Quality and Its Relation to Issue Handling Performance,” vol. 0, no. 0, pp.

1–25, 2000.

[18] S. Lukasczyk, F. Kroiß, and G. Fraser, “Automated Unit Test Generation

for Python,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.

Intell. Lect. Notes Bioinformatics), vol. 12420 LNCS, pp. 9–24, 2020, doi:

10.1007/978-3-030-59762-7_2.

[19] F. Trautsch and J. Grabowski, “Are there any Unit Tests ? An Empirical

Study on Unit Testing in Open Source Python Projects,” 2017.

[20] A. Tosun and M. Ahmed, “On the Effectiveness of Unit Tests in Test-driven

Development”.

[21] S. S. Wibagso and I. Celesta, “Extreme Programming Approach in E-PANJO

Design to Support Information Management at Nursing Home,” pp. 93–104.

[22] K. Fakhroutdinov, “UML 2.5 Diagrams Overview,” 2025. https://www.uml-

diagrams.org/uml-25-diagrams.html

[23] M. R. V Chaudron, “An industrial case study on the use of UML in software

maintenance and its perceived benefits and hurdles,” 2018.

[24] N. Sari and D. Cahyani, “Perancangan Sistem Informasi Monitoring

Sertifikat Menggunakan Extreme Programming,” J. Ilm. Comput. Sci., vol.

1, no. 1, pp. 1–6, 2022, doi: 10.58602/jics.v1i1.1.

[25] TESTINGMIND, “Future of QualityAssurance (Survey Report).”

[26] JetBrains, “Python Developers Survey 2023 Results,” 2023.

https://lp.jetbrains.com/python-developers-survey-2023/

81

[27] S. Lukasczyk and G. Fraser, Pynguin, vol. 1, no. 1. Association for

Computing Machinery, 2022. doi: 10.1145/3510454.3516829.

[28] C. Rupp, S. Queins, and die SOPHISTen, “Use-Case-Diagramm,” UML 2

Glas., no. September, pp. 239–262, 2012, doi: 10.3139/9783446431973.012.

	PENGESAHAN TUGAS AKHIR
	SURAT PERSETUJUAN TUGAS AKHIR
	SURAT PERNYATAAN KEASLIAN
	MOTO
	INTISARI
	ABSTRACT
	KATA PENGANTAR
	DAFTAR ISI
	DAFTAR GAMBAR
	DAFTAR TABEL
	BAB I PENDAHULUAN
	1.1 Latar Belakang
	1.2 Rumusan Masalah
	1.3 Tujuan Penelitian
	1.4 Batasan Masalah
	1.5 Manfaat Penelitian

	BAB V KESIMPULAN DAN SARAN
	5.1 Kesimpulan
	5.2 Saran

	DAFTAR PUSTAKA

