SKRIPSI

RANCANG BANGUN EKSTENSI VISUAL STUDIO CODE
(VSCODE) TERINTEGRASI AI UNTUK GENERASI UNIT
TEST

Sebagai salah satu syarat untuk memperoleh gelar Sarjana Komputer (S.Kom)

N
&
(el

%
Qi

FANSURI FADEL FITRAH PRAKON
NIM: 21106050091

PROGRAM STUDI INFORMATIKA
FAKULTAS SAINS DAN TEKNOLOGI
UNIVERSITAS ISLAM NEGERI SUNAN KALIJAGA
YOGYAKARTA
2025

PENGESAHAN TUGAS AKHIR

KEMENTERIAN AGAMA
UNIVERSITAS ISLAM NEGERI SUNAN KALIJAGA
Dio FAKULTAS SAINS DAN TEKNOLOGI
J1. Marsda Adisucipto Telp. (0274) 540971 Fax. (0274) 519739 Yogyakarta 55281

PENGESAHAN TUGAS AKHIR
Nomor : B-2520/Un.02/DST/PP.00.9/12/2025

Tugas Akhir dengan judul :Rancang Bangun Ekstensi Visual Studio Code (VSCode) Terintegrasi Al untuk
Otomatisasi Unit Test

yang dipersiapkan dan disusun oleh:

Nama : FANSURI FADEL FITRAH PRAKON
Nomor Induk Mahasiswa : 21106050091

Telah diujikan pada : Selasa, 16 Desember 2025

Nilai ujian Tugas Akhir L A-

dinyatakan telah diterima oleh Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

TIM UJTAN TUGAS AKHIR

;3‘ # Dr. Ir. Aulia Fagih Rifa'i, M.Kom.
SIGNED

\gf Penguji T Penguji 11

7
by
!
=

N

Ayed Dr. Fitri Wulandari, S.Si., M.Kom.

Ir. Maria Ulfah Siregar, S.Kom., MIT., Ph.D.
3 SIGNED

SIGNED

RN
[Che e ; ;
Valid ID: 6945057cf12¢1 Valid ID: 694516972106

Yogyakarta, 16 Desember 2025
UIN Sunan Kalijaga
Dekan Fakultas Sains dan Teknologi

SURAT PERSETUJUAN TUGAS AKHIR

Qo Universitas Islam Negeri Sunan Kalijaga :f‘) 5:'_"." FM-UINSK-BM-05-03/R0
i w7
SURAT PERSETUJUAN SKRIPSI/TUGAS AKHIR

Hal : Persetujuan Skripsi/ Tugas Akhir
Lamp :-

Kepada
Yth. Dekan Fakultas Sains dan Teknologi
UIN Sunan Kalijaga Yogyakarta
Di Yogyakarta
Assalammu’alaikum wr. wb.
Setelah membaca, meneliti, memberikan petunjuk dan mengoreksi serta mengadakan

perbaikan seperlunya, maka saya selaku pembimbing berpendapat bahwa skripsi Saudari:

Nama : Fansuri Fadel Fitrah Prakon
NIM : 21106050091
Judul Skripsi : Rancang Bangun Ekstensi Visual Studio Code (VScode)

Terintegrasi Al Untuk Otomatisasi Generasi Unit Test

sudah dapat diajukan kembali kepada Program Studi Informatika Fakultas Sains dan Teknologi
UIN Sunan Kalijaga Yogyakarta sebagai salah satu syarat untuk memperoleh gelar Sarjana Strata

Satu dalam Program Studi Informatika.

Dengan ini kami mengharap agar skripsi/tugas akhir Saudara dapat segera

dimunagasyahkan. Atas perhatiannya saya ucapkan terima kasih.

Wassalammu'alaikum wr. wb.
Yogyakarta, 10 Desember 2025
Pembimbing

Ir. Auliah Fagih Rifa’i, M.Kom.
NIP. 19860306 201101 1 009

i

SURAT PERNYATAAN KEASLIAN

SURAT PERNYATAAN KEASLIAN

Yang bertanda tangan di bawah ini:

Nama Lengkap : Fansuri Fadel Fitrah Prakon
NIM 121106050091

Tempat/Tgl lahir : Lamakera, 09 November 2003
Program Studi : Informatika

Dengan ini saya menyatakan dengan sesungguhnya bahwa skripsi yang saya susun
dan ajukan merupakan hasil karya dan tulisan saya sendiri, bukan hasil penjiplakan
atau pengambilan karya orang lain secara tidak sah. Seluruh sumber yang
digunakan dalam penyusunan skripsi ini telah dicantumkan sesuai dengan kaidah

penulisan ilmiah yang beriaku.

Apabila di kemudian hari terbukti bahwa skripsi ini merupakan hasil plagiarisme
atau melanggar ketentuan akademik yang berlaku, maka saya bersedia menerima

sanksi sesuai dengan peraturan dan ketentuan hukum yang berlaku.
Demikian surat pernyataan ini saya buat untuk dapat dipergunakan sebagaimana

mestinya.

Senin, 08 Desember 2025

Yang membuat pernyataan,

~ mahasiswa

Fansuri FadeNFitrah Prakon

NIM.21106050091

il

MOTO

"Ilmu bukanlah yang dihafal, tetapi yang memberi manfaat."

— (Imam Syafi’1)

1Y

INTISARI

Pengujian perangkat lunak merupakan tahapan krusial dalam pengembangan
sistem untuk menjamin kualitas dan keandalan aplikasi. Namun, proses penulisan
unit test secara manual masih memerlukan waktu dan usaha yang besar, sehingga
sering kali menjadi beban bagi pengembang. Penelitian ini bertujuan untuk
merancang dan membangun sebuah ekstensi Visual Studio Code bernama Unittest
Generator yang terintegrasi dengan kecerdasan buatan berbasis Large Language
Model (LLM) melalui Groq API dan OpenRouter API guna mengotomatisasi
proses generasi unit test untuk berbagai bahasa pemrograman, yaitu Python,
JavaScript, dan Java. Metode pengembangan yang digunakan adalah Extreme
Programming (XP) yang dipadukan dengan pendekatan Research and Development
(R&D) melalui dua iterasi pengembangan.

Hasil pengujian pada iterasi kedua menunjukkan bahwa seluruh kebutuhan
fungsional sistem telah terpenuhi dengan baik. Evaluasi kualitas unit test yang
dihasilkan menunjukkan nilai line coverage pada kisaran 85-92% dan mutation
score sebesar 70-86%, yang mengindikasikan efektivitas unit test dalam
mendeteksi kesalahan pada kode sumber. Selain itu, pengujian berbasis metrik
BLEU dan ROUGE menunjukkan kesesuaian struktur dan substansi unit test
terhadap referensi yang digunakan. Dari sisi performa, sistem mampu
menghasilkan unit test dengan waktu respons rata-rata 4-8 detik, yang jauh lebih
efisien dibandingkan penulisan unit test secara manual. Berdasarkan hasil tersebut,
dapat disimpulkan bahwa ekstensi Unittest Generator mampu meningkatkan
efisiensi, kualitas, dan produktivitas pengujian perangkat lunak, serta berpotensi
menjadi solusi praktis dalam mendukung adopsi Al pada proses pengujian di
lingkungan pengembangan modern.

Kata kunci: Generasi Unit Test, Ekstensi VSCode, Large Language Model,

Otomatisasi Pengujian, Extreme Programming.

ABSTRACT

Software testing is a critical phase in the software development lifecycle to
ensure system quality and reliability. However, manual unit test writing remains
time-consuming and effort-intensive, often becoming a burden for developers. This
study aims to design and develop a Visual Studio Code extension named Unittest
Generator, integrated with artificial intelligence based on Large Language Models
(LLMs) through Grog API and OpenRouter API, to automate unit test generation
for multiple programming languages, namely Python, JavaScript, and Java. The
development process applies the Extreme Programming (XP) methodology
combined with a Research and Development (R&D) approach across two
development iterations.

The testing results in the second iteration indicate that all functional
requirements of the system have been successfully fulfilled. The quality evaluation
of the generated unit tests shows line coverage ranging from 85—92% and mutation
scores between 70-86%, indicating that the generated tests are effective in
detecting faults within the source code. Furthermore, evaluation using BLEU and
ROUGE metrics demonstrates a strong structural and semantic alignment between
the generated unit tests and reference implementations. In terms of performance,
the system achieves an average unit test generation time of 4—8 seconds, which is
significantly faster than manual test creation. Based on these results, this research
concludes that the Unittest Generator extension effectively improves testing
efficiency, quality, and developer productivity, and serves as a practical solution to
support Al adoption in modern software testing workflows.

Key words: Unit Test Generation, VSCode Extension, Large Language Model, Test

Automation, Extreme Programming

Vi

KATA PENGANTAR

Puji syukur selalu panjatkan ke kehadirat Allah SWT atas berkat dan rahmat-
Nya, penulis dapat menyelesaikan penelitian ini yang berjudul “Rancang Bangun
Ekstensi Visual Studio Code (VSCode) Terintegrasi Al untuk Otimatisasi Unit test”
dengan lancar. Tak lupa sholawat serta salam senantiasa tercurahkan kepada
baginda Nabi Muhammad SAW, yang telah memberikan syafaat teladan baik bagi
umatnya dalam menuntut ilmu dan mengamalkannya.

Tentunya selama proses mengerjakan tugas akhir ini penulis tidak sendirian.
Banyak dukungan dari berbagai pihak dalam bentuk semangat, bimbingan dan
kontribusi selama proses penyusunan. Oleh karena itu penulis mengucapkan terima
kasih yang sebesar-besarnya kepada:

Bapak Prof. Noorhaidi Hasan, S.Ag., M.A., M.Phil., Ph.D., selaku Rektor
Universitas Islam Negeri Sunan Kalijaga Yogyakarta.

Ibu Prof. Dr. Dra. Hj. Khurul Wardati, M.Si., selaku Dekan Fakultas Sains dan
Teknologi Universitas Islam Negeri Sunan Kalijaga Yogyakarta.

Bapak Muhammad Mustakim, S.T., M.T., selaku Ketua Program Studi Informatika
Fakultas Sains dan Teknologi Universitas Islam Negeri Sunan Kalijaga
Yogyakarta.

Bapak Ir. Aulia Faqih Rifa’l, M.Kom. selaku Dosen Pembimbing Tugas Akhir yang
telah bersedia meluangkan waktunya untuk memberikan arahan serta bimbingan
selama proses mengerjakan tugas akhir.

Seluruh Dosen dan Karyawan Program Studi Informatika UIN Sunan
Kalijaga yang telah kontribusinya selama proses menempuh pendidikan di bangku
perkuliahan.

Kedua orang tua penulis Bpk. Muhammad Idris dan Ibu Saud Muhammad
yang senantiasa memberikan dukungan, kasih sayang dan pembelajaran yang
berharga sehingga penulis bisa berada di posisi saat ini.

Kaka penulis Virasuci Widyastuti yang telah menemani perjuangan penulis selama

proses perkuliahan dari awal 2021 hingga saat ini.

vii

Kaka penulis Nona Rosmiyati yang juga senantiasa memberikan dukungan,
kasih sayang, serta pembelajaran berharga bagi menulis sehingga penulis senantiasa
mampu menghadapi setiap kendala hadir.

Teman teman seperjuangan penulis, Hirzil, Rizal, Ihfan, Hanif Anggara, Rohman,
Alega, Didit, teman-teman dari program studi informatika angkatan 2021 yang
telah membersamai penulis dalam proses perkuliahan.

Penulis menyadari bahwa penyusunan tugas akhir ini masih banyak
kekurangan dan keterbatasan. Oleh karena itu penulis mengharapkan semoga tugas
akhir ini dapat memberikan manfaat dan kontribusi bagi pengembang pada bidang

Informatika, serta menjadi referensi yang berguna bagi pembaca.

Yogyakarta, 10 Desember 2025

Penulis

Fansuri Fadel Fitrah Prakon

NIM.21106050091

viil

DAFTARISI

PENGESAHAN TUGAS AKHIRooiiiiiieeceeee et i
SURAT PERSETUJUAN TUGAS AKHIRc.oociiiiiiinieniiieneneceeeeee e il
SURAT PERNYATAAN KEASLIAN.......ooiieieiieeeeeetee et il
11 (0 2 O USRI v
INTISARI....oieeeee ettt sttt sttt et sttt e e st esaeeneeas v
ABSTRACT ..ottt ettt e e sse e e ensesseeseeneas vi
KATA PENGANTAR ..ottt vii
DAFTAR ISL.ieeeeee ettt ix
DAFTAR GAMBAR ..ottt ae s Xi
DAFTAR TABEL ..ottt xii
BAB I PENDAHULUAN ..ottt sttt st 1
1.1 Latar Belakangcccooviioiiiiiiiee e 1
1.2 Rumusan Masalahcccooiiiiiiiiiiiicceccecee e 3
1.3 Tujuan Penelitianccooiiiiiiiiiiiiiieeee e 3
1.4 Batasan Masalah..........cooccooiiiiiiiiiii e 3
1.5 Manfaat Penelitiancocceeeieiiiiiieiieciceeeee e 4
BAB II TINJAUAN PUSTAKA ...t 5
2.1 Pengujian Perangkat Lunak..........cccooooiiiniiiiniiiie e, 5
2.2 Onitffest L. LOLAAIVYUINL LLINLY. EROLL L., 6
2.3 Large Language Model (LLM)oooiiiiiiiiiiiceiecee et 6
2.4 Visual Studio Code (VSCode) dan EKStensi........ccoeevveervieinieeenveeenneenns 8
2.5 GrOQ AP ... e 9
2.6 OpenROULEr APL.....coiiiiiiiiee e 10
2.7 Test QUality MELICScceeriieiieiieeiieeie ettt ettt enea 10
2.7.1 Metrik Code COVETAZEccuviriienieeiieiie ettt 11
2.7.2 MULAtION SCOTEeouviiiiiiiiieriieitete et 11

1X

2.7.3 Structural Quality MEtriCc.ceevveeriieiiieiieeiieiie e 12

2.8 Extreme Programmingccceecueeruierieeniieeiiienieeieenieereeseneevee e e 12
2.9 Unified Modeling Languageccccuvevueeriiienieeiienieeieesie e 13
BAB IIIl METODOLOGI PENELITIAN......ccotiiiriiieiienieieeeseeeeeeee e 15
3.1 Metode Penelitian.c.oovuiiiiiiiiiiiiiiiece e 15
3.2 Tahapan Pengembangan............ccccveevvieeiiieeiieecieecee e 17
BAB IV PERANCANGAN DAN IMPLEMENTASI......cccooviirieieeeieeeeee 19
4.1 Gambaran Umum SISTEIMccueeueerierieiieniieieeie e 19
4.2 Ttersal Pertama........c.cooooiiiiiiiiiiiiiiieee e 19
4.2.1 Iterasi Pertama: Perencanaan (Planning)cccceevveevvvevneennen. 20
422 Iterasi Pertama: Perancangan (Design)cccoeceeveeeieeeneeeceeennen. 24
423 Iterasi Pertama: Penerapan (Coding)cccceceeeviieniieniienireieenen. 30
4.2.4 Iterasi Pertama: Pengujian (TeSting)ceveereeevueenierniienieeieennen. 34
4.2.5 Iterasi Pertama: Refactoring........c..ccceevevieriineininiiniincnicneeee 35

4.3 Tterasi Keduaccouieviiiieieeeee e 37
43.1 Iterasi Kedua: Perencanaan (Planning)cceceeviiiiieninnennen. 37
432 Iterasi Kedua: Perancangan (Design)........ccccooeeviriiniincnicncennen. 39
433 Iterasi Kedua: Penerapan (Coding)cccceeevieviiiviieeeniiesevee e 52
434 Iterasi Kedua: Pengujian (7esting).........ccccoeeveeriiiinieeiniieeereeene 60
43.5 Iterasi Kedua: Refactoringcccoeevvveiieeeiienee e 75
BAB V KESIMPULAN DAN SARAN......cooiititieet ettt 77
5.1 KeSTMPUIAN ..ot 77
5.2 SATANL ..ottt 77
DAFTAR PUSTAKA ...ttt 79

DAFTAR GAMBAR

Gambar 4.1 Diagram ArsiteKtur SiStem.........cccevvierieeiiienieeiienie e 25
Gambar 4.2 Class Diagram Iterasi Pertama.............ccccoevvvviieiieiccie e, 26
Gambar 4.3 Sequence Diagram Iterasi Pertamaccccoeeveeviiiinciiecciee e, 28
Gambar 4.4 Desain Ul Iterasi Pertamac..ccoceveiienieniiiinienceieccsceee 29
Gambar 4.5 Implementasi UL DaSarcccocvueeviieriiiiiienieeiiesie e 31
Gambar 4.6 Artitektur Diagram Iterasi Kedua.........ccccooeveeviiiiciiiiciiceee, 41
Gambar 4.7 Class Diagram Iterasi Kedua.........c.ccooceeviiniiniiiininiiiiccnne 43
Gambar 4.8 Sequence Diagram (GenerateTest) Iterasi Kedua..........cc.cceevvvennne 45
Gambar 4.9 Sequence Diagram (Analisis Unit Test Otomatis) Iterasi Kedua...... 46
Gambar 4.10 Sequence Diagram (Perhitungan Code Coverage)...........cccceeuenneene. 47
Gambar 4.11 Sequence Diagram (Menyimpan File)ccccoooiiiiiiiiiiiininnnnn. 48
Gambar 4.12 Desain Ul Keadaan Awal..........coccooviiiiiiiiiiiiiiniiieeeeceeee 50
Gambar 4.13 Panel Option Iterasi Keduac.ccoceevieiiieiieniiiiecieececie e 51
Gambar 4.14 Implementasi UL AWalc..ccceoiviiiiiiiiiiiiiieiieiieeeeceeeeeeie e 53
Gambar 4.15 Implementasi Panel Optionc..ccccoeveriiniiieniienenniciicnecenne 54
Gambar 4.16 Popup setelah Tombol File Diklikcocoininiiiiiiininne 55
Gambar 4.17 Group of Language........ccccueeerviieiieeeiieeeiieeeeeesie e 58

X1

DAFTAR TABEL

Tabel 1.1 Tools Yang Digunakan Dalam Pengujian Unit..........cccccooeeviineniencnnens 6
Tabel 4.1 Kebutuhan Fungsional Sistem Iterasi Pertamacccccceeeveeennennee. 21
Tabel 4.2 Perencanaan Sumber Daya..........cccceeeviieeciiieniieeeieecee e 22
Tabel 4.3 Hasil Pengujian Iterasi Pertama...........cccccoeevieriieiiienieiiienieeicenie e 34
Tabel 4.4 Refactoring Iterasi Pertama............ccoceevieeiiienieeniieniecieieeceie e 36
Tabel 4.5 Kebutuhan Fungsional Iterasi Kedua...........ccccovvvviieiiiniiiiieeiee, 38
Tabel 4.6 Hasil Pengujian Fungsional Iterasi Kedua.............cocoviiiniiiiinnnnnn. 61
Tabel 4.7 Hasil Pengujian Code COVEIagecccvervreriienieeiieniieeieesieereeneneeveens 62
Tabel 4.8 Hasil Pengujian MUtationc..ccceeevuierieeiiienieeiienieeieeseeeneeseeeenaens 64
Tabel 4.9 Hasil Pengujian BLEU........cccccooiiiiiiiiiiiiicccecee 65
Tabel 4.10 Hasil Pengujian Menggunakan Metrik ROUGE..............c..ccccoenee 68
Tabel 4.11 Hasil Pengujian Exact Match...........cccoooiiiiiiiiiiie 70
Tabel 4.12 Hasil Pengujian Performa Model............cccoeviieiiiniiiiiiniieieieeine 71
Tabel 4.13 Hasil Perbandingan Manual dan Otomatis Test..........c..ccceeevierveennnns 74

Xii

BAB I
PENDAHULUAN

1.1 Latar Belakang

Dalam beberapa tahun terakhir, kemajuan teknologi kecerdasan buatan (Al)
telah mengubah proses pengembangan perangkat lunak, terutama pada tahap yang
krusial yaitu pengujian untuk menjamin kualitas sistem. Melibatkan Al dalam
pengujian terbukti ampuh dalam meningkatkan efisiensi, akurasi, dan cakupan
pengujian secara signifikan. Namun, adopsi teknologi ini di industri nyatanya masih
terbatas. Hal ini disebabkan adanya kendala teknis dan sulit dalam validasi hasil
yang mengakibatkan pemanfaatan Al untuk generasi test case, analisis kode, dan
otomatisasi cerdas menjadi tidak optimal [1]. Temuan tersebut selaras dengan
servey yang dilakukan industri Tricentis (2024), di mana meskipun 60% profesional
pengujian menganggap Al sebagai investasi strategis, namun masih banyak
organisasi yang masih berada di tahap eksplorasi awal [2]. Alasannya adalah pada
proses pembuatan skripnya yang membutuhkan waktu yang cukup lama. Seorang
pengembang menghabiskan hampir 15,8% waktu mereka untuk menulis test, dan
42,72% untuk aktivitas terkait pengujian (termasuk debugging dan perbaikan) [3].
Hal ini menjadi beban manual bagi para pengembang untuk melakukan pengujian
dengan unit test. Jadi, terlihat jelas bahwa ada perbedaan antara kemampuan besar
Al dan cara penerapannya dalam otomatisasi pengujian, sebuah situasi yang
memerlukan penelitian yang lebih lanjut.

Memperhatikan kesenjangan tersebut, penting untuk mencari strategi
penerapan yang lebih efektif. Salah satu peluang besar terletak pada tren
perkembangan ekosistem yang kini bergerak menuju cara kerja extension-in-IDE.
Dalam pendekatan ini, teknologi baru seperti kecerdasan buatan bisa langsung
terintegrasi ke dalam pekerjaan para pengembang melalui alat bantu ekstensi.
Visual Studio Code (VSCode), sebagai salah satu IDE yang paling banyak
digunakan dan bisa diatur sesuai kebutuhan, menjadi platform yang cocok untuk

pendekatan ini. Dirancang dengan ekstensibilitas sebagai prinsip inti, hampir setiap

aspek VSCode dari antarmuka hingga pengalaman pengeditan dapat dikustomisasi
dan ditingkatkan melalui API Ekstensi. Bahkan, banyak fitur inti yang dibangun
sebagai ekstensi yang memanfaatkan API tersebut [4]. Perkembangan ini menjadi
angin segar bagi pengembang untuk menghadirkan solusi pengujian berbasis Al
secara lebih langsung dan kontekstual, berpotensi mengatasi kendala teknis dan
adaptasi yang diidentifikasi dalam penelitian sebelumnya, sekaligus mewujudkan
investasi strategis yang diharapkan oleh para pengembang profesional.

Oleh karena itu, integrasi teknologi Al secara langsung ke dalam IDE seperti
Visual Studio Code (VSCode) tidak lagi terbatas pada konsep, tetapi telah didukung
oleh kematangan platform Al khusus. Kemunculan platform Al yang menyediakan
API seperti Groq API dan OpenRouter menjadi kunci dalam realisasi ide ini. Groq
API menawarkan pemrosesan bahasa alami untuk pembuatan dan pengujian kode,
sementara OpenRouter API menyediakan akses terpadu dan efisien ke berbagai
model Al generatif yang mutakhir [5], [6]. Dengan memanfaatkan kemampuan
kedua teknologi ini di dalam ekosistem ekstensi Visual Studio Code (VSCode),
dapat diwujudkan sistem generasi unit test yang diotomatisasi. Diharapkan sistem
ini tidak hanya dapat mengatasi kendala kecepatan dan validasi, tetapi juga mampu
beradaptasi dengan konteks kode spesifik dan gaya pengkodingan masing-masing
pengembang, sehingga menjawab langsung tantangan adopsi yang diungkapkan
dalam penelitian sebelumnya.

Berdasarkan landasan tersebut, urgensi penelitian ini semakin
jelas: menghadirkan solusi praktis yang langsung menjawab akar masalah
rendahnya efisiensi dan adopsi otomatisasi pengujian. Penelitian ini bertujuan
merancang dan membangun sebuah ekstensi Visual Studio Code yang
memanfaatkan Groq dan OpenRouter API untuk mengotomatisasi generasi unit
test. Dengan pendekatan "extension-in-IDE" yang didukung layanan Al khusus,
solusi ini diharapkan dapat secara langsung mengatasi kendala teknis dan
validasi yang diidentifikasi sebelumnya, sehingga berkontribusi dengan cara: 1)
Mempercepat proses pengujian secara signifikan; 2) Mengurangi beban
manual pengembang dalam menulis fest case; dan 3) Meningkatkan cakupan serta

kualitas pengujian perangkat lunak.

Dengan demikian, urgensi penelitian tidak hanya terletak pada inovasi
integrasi teknologinya, tetapi lebih pada perannya sebagai jembatan yang
menghubungkan potensi Al dari ranah akademis dan konseptual dengan alur kerja

nyata di industri pengembangan perangkat lunak modern.

1.2 Rumusan Masalah

1. Bagaimana cara merancang dan mengembangun ekstensi Visual Studio
Code (VSCode) yang mampu mengintegrasikan Al untuk menghasilkan
unit test untuk berbagai bahasa pemrograman?

2. Bagaimana kualitas skrip pengujian yang dihasilkan oleh Ekstensi?

1.3 Tujuan Penelitian

Tujuan dari penelitian ini adalah sebagai berikut:
1. Merancang dan membangun ekstensi Visual Studio Code yang terintegrasi
dengan Groq dan Openrouter API sebagai sarana otomatisasi dalam
pembuatan unit test.

2. Mengevaluasi kualitas skrip unit test yang berhasil di generate oleh ekstensi.

1.4 Batasan Masalah

Agar penelitian ini lebih terarah dan fokus, maka ruang lingkup penelitian

dibatasi pada beberapa aspek berikut:
1. Lingkup Pengembangan:

Penelitian ini hanya berfokus pada pengembangan ekstensi Visual Studio
Code (VSCode) yang berfungsi untuk mengotomatisasi proses pembuatan unit test.
Ekstensi ini tidak terintegrasi dengan IDE lain seperti PyCharm, Intellij IDEA, atau
Eclipse.

2. Teknologi yang digunakan:
Kecerdasan buatan yang digunakan dalam penelitian ini terbatas pada Groq

dan Openrouter API sebagai sumber pemrosesan LLM untuk menghasilkan kode

unit test. Penelitian ini tidak membahas atau membandingkan performa dengan API
Al lainnya seperti OpenAl APL, Gemini API, atau Mistral API.
3. Jenis pengujian:

Penelitian ini berfokus pada pembuatan dan pengujian unit test yang bersifat
fungsi atau kelas. Pengujian integrasi (Integration Testing), system testing, atau
performance testing tidak termasuk kedalam cakupan penelitian.

4. Evaluasi sistem:

Evaluasi dilakukan secara terbatas pada aspek fungsionalitas, kualitas hasil
generasi unit test, perbandingan antara manual dan otomatis testing dan performa
sistem tanpa melakukan analisis mendalam seperti pada aspek keamanan data dan
lain-lain.

5. Lingkungan implementasi:

Kegiatan merancang dan membangun serta proses pengujian ekstensi

dilakukan pada lingkungan pengembangan Visual Studio Code (VSCode) dengan

dukungan sistem operasi Windows 11.

1.5 Manfaat Penelitian

Manfaat penelitian ini adalah membantu pengembang dalam meningkatkan
efisiensi dan akurasi pembuatan unit fest, serta memberikan kontribusi akademik
berupa penerapan Groq dan OpenRouter API dalam konteks software testing

berbasis IDE Extension.

BAB YV
KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil pengujian dan evaluasi yang dipaparkan pada bab
sebelumnya, dapat disimpulkan bahwa ekstensi Unittest Generator yang
dikembangkan telah berfungsi secara optimal baik dari sisi fungsionalitas, kualitas
hasil unit test, maupun performa sistem. Seluruh kebutuhan fungsional pada iterasi
pertama dan kedua berhasil dipenuhi, yang ditunjukkan melalui pengujian black-
box dengan hasil pass pada seluruh skenario. Pada aspek kualitas unit test, hasil
pengujian menunjukkan bahwa unit test yang dihasilkan oleh sistem memiliki
tingkat line coverage yang tinggi, berada pada rentang 85-92%, serta mutation
score antara 70-86%, yang mengindikasikan bahwa test yang dihasilkan efektif
dalam mendeteksi perubahan perilaku kode. Evaluasi berbasis metrik BLEU dan
ROUGE juga menunjukkan kesesuaian struktur dan substansi unit test terhadap
referensi, sehingga memperkuat validitas hasil generasi kode. Dari sisi performa,
waktu rata-rata generasi unit test berada pada kisaran 4-8 detik, yang secara
signifikan lebih cepat dibandingkan penulisan unit test secara manual. Selain itu,
perbandingan antara manual testing dan otomatis testing menunjukkan efisiensi
waktu yang jauh lebih tinggi tanpa mengorbankan kualitas pengujian. Dengan
demikian, hasil pengujian pada Bab IV membuktikan bahwa integrasi LLM melalui
ekstensi Visual Studio Code tidak hanya layak secara teknis, tetapi juga efektif
sebagai solusi praktis untuk meningkatkan efisiensi dan kualitas proses pengujian

perangkat lunak.

5.2 Saran

Berdasarkan hasil penelitian dan pengembangan yang telah dilakukan,
berikut adalah beberapa rekomendasi untuk pengembangan lebih lanjut:
1. Implementasi Mutation Testing Terintegrasi: Menambahkan mutation

testing langsung dalam ekstensi untuk menilai efektivitas unit fest secara

77

78

lebih akurat. Hal ini akan memberikan feedback yang lebih komprehensif
kepada pengguna daripada hanya mengandalkan estimasi code coverage.

2. Pengembangan Test Repair System: Mengembangkan fitur otomatis
untuk memperbaiki unit test yang gagal atau memiliki efektivitas rendah.
Sistem ini dapat menganalisis kegagalan test dan merekomendasikan atau
secara otomatis menghasilkan perbaikan berbasis LLM.

3. Adaptive Prompt Engineering: Mengembangkan model prompt yang
dapat beradaptasi secara otomatis berdasarkan karakteristik kode
pengguna, kompleksitas fungsi, dan pola pengembangan yang spesifik
untuk meningkatkan relevansi dan kualitas test yang dihasilkan.

4. Meningkatkan tampilan visual laporan kualitas, misalnya melalui
grafik atau heatmap coverage dan juga grafik untuk quality metric yang
diterapkan.

Dengan menerapkan saran-saran tersebut, penelitian ini bisa diperluas

menjadi solusi pengujian yang lebih kuat, menyeluruh, dan bermanfaat bagi para

pengembang perangkat lunak di seluruh dunia.

[10]

[11]

[12]

[13]

[14]

79

DAFTAR PUSTAKA

K. Karhu, J. Kasurinen, and K. Smolander, “Expectations vs Reality -- A
Secondary Study on Al Adoption in Software Testing,” pp. 1-26, 2025.
Tricentis, “Results from the 2024 Techstrong Research and Tricentis
survey,” 2024.

E. Daka and G. Fraser, “A Survey on Unit Testing Practices and Problems”.
V. S. Code, “Extension APL.”

Groq, “Groq Documentation.” https://console.groq.com/docs

Openrouter, “Openrouter Docs.”

Z. Yuan et al., “Evaluating and Improving ChatGPT for Unit Test
Generation,” vol. 1, no. July, pp. 1-24, 2024.

T. Informatika, I. Teknologi, and S. Nopember, “PENGUIJIAN
PERANGKAT LUNAK DENGAN MENGGUNAKAN MODEL
BEHAVIOUR UML Waskitho Wibisono , Fajar Baskoro,” pp. 43-50.

A. N. Hasibuan and T. Dirgahayu, “Pengujian dengan Unit Testing dan Test
case pada Proyek Pengembangan Modul Manajemen Pengguna.”

N. Q. Dwiharani, Y. Wibisono, and Y. Wihardi, “Penerapan Large Language
Models Dalam Pembaruan Artikel Biografi Wikipedia,” vol. 4, no. 2, pp.
804-813, 2025.

E. Nijkamp et al., “CODEGEN: AN OPEN LARGE LANGUAGE MODEL
FOR CODE WITH MULTI-TURN PROGRAM SYNTHESIS,” pp. 1-25,
2023.

S. Bhatia, T. Gandhi, D. Kumar, and P. Jalote, “Unit Test Generation using
Generative Al: A Comparative Performance Analysis of Autogeneration
Tools,” Proc. - 2024 Int. Work. Large Lang. Model. Code, LLM4Code 2024,
pp. 54-61, 2024, doi: 10.1145/3643795.3648396.

J. Jiang, F. Wang, J. Shen, S. Kim, and S. Kim, “A Survey on Large
Language Models for Code Generation,” J. ACM, vol. 37, no. 4, pp. 1-70,
2018.

S. Chodarev, “Visual augmentation of source code editors: A systematic

mapping study,” vol. 49, pp. 4659, 2018.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

80

E. Cal, T. Fulcini, R. Coppola, L. Laudadio, M. Torchiano, and P. Torino,
“A Prototype VS Code Extension to Improve Web Accessible
Development”.

Microsoft, “Start developing extensions in Visual Studio,” 2024.
https://learn.microsoft.com/en-us/visualstudio/extensibility/starting-to-
develop-visual-studio-
extensions?view=visualstudio&source=recommendations (accessed Nov.
16, 2025).

D. Athanasiou, A. N. Member, J. V. Member, and 1. C. Society, “Test Code
Quality and Its Relation to Issue Handling Performance,” vol. 0, no. 0, pp.
1-25, 2000.

S. Lukasczyk, F. Kroi3, and G. Fraser, “Automated Unit Test Generation
for Python,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.
Intell. Lect. Notes Bioinformatics), vol. 12420 LNCS, pp. 9-24, 2020, doi:
10.1007/978-3-030-59762-7 2.

F. Trautsch and J. Grabowski, “Are there any Unit Tests ? An Empirical
Study on Unit Testing in Open Source Python Projects,” 2017.

A. Tosun and M. Ahmed, “On the Effectiveness of Unit Tests in Test-driven
Development”.

S. S. Wibagso and I. Celesta, “Extreme Programming Approach in E-PANJO
Design to Support Information Management at Nursing Home,” pp. 93—104.
K. Fakhroutdinov, “UML 2.5 Diagrams Overview,” 2025. https://www.uml-
diagrams.org/uml-25-diagrams.html

M. R. V Chaudron, “An industrial case study on the use of UML in software
maintenance and its perceived benefits and hurdles,” 2018.

N. Sari and D. Cahyani, “Perancangan Sistem Informasi Monitoring
Sertifikat Menggunakan Extreme Programming,” J. IIm. Comput. Sci., vol.
1, no. 1, pp. 1-6, 2022, doi: 10.58602/jics.v1il.l.

TESTINGMIND, “Future of QualityAssurance (Survey Report).”
JetBrains, “Python Developers Survey 2023 Results,” 2023.
https://Ip.jetbrains.com/python-developers-survey-2023/

81

[27] S. Lukasczyk and G. Fraser, Pynguin, vol. 1, no. 1. Association for
Computing Machinery, 2022. doi: 10.1145/3510454.3516829.

[28] C. Rupp, S. Queins, and die SOPHISTen, “Use-Case-Diagramm,” UML 2
Glas., no. September, pp. 239-262, 2012, doi: 10.3139/9783446431973.012.

	PENGESAHAN TUGAS AKHIR
	SURAT PERSETUJUAN TUGAS AKHIR
	SURAT PERNYATAAN KEASLIAN
	MOTO
	INTISARI
	ABSTRACT
	KATA PENGANTAR
	DAFTAR ISI
	DAFTAR GAMBAR
	DAFTAR TABEL
	BAB I PENDAHULUAN
	1.1 Latar Belakang
	1.2 Rumusan Masalah
	1.3 Tujuan Penelitian
	1.4 Batasan Masalah
	1.5 Manfaat Penelitian

	BAB V KESIMPULAN DAN SARAN
	5.1 Kesimpulan
	5.2 Saran

	DAFTAR PUSTAKA

