
i

HALAMAN JUDUL

TUGAS AKHIR

RANCANG BANGUN EXTENSION CHROME UNTUK GOLANG

UNIT TEST GENERATOR DENGAN MODEL BAHASA

GENERATIVE AI

Sebagai Memenuhi Persyaratan Mencapai Derajat Sarjana (S1)

DISUSUN OLEH:

RIZAL DARUSMAN

NIM.21106050080

PROGRAM STUDI INFORMATIKA

FAKULTAS SAINS DAN TEKNOLOGI

UNIVERSITAS ISLAM NEGERI SUNAN KALIJAGA

YOGYAKARTA

2025

ii

PENGESAHAN TUGAS AKHIR

iii

SURAT PERSETUJUAN TUGAS AKHIR

iv

SURAT PERNYATAAN KEASLIAN TUGAS AKHIR

v

ABSTRAK

Penulisan unit test secara manual dalam ekosistem Golang seringkali kompleks dan

menyita waktu, yang menghambat efisiensi penerapan Test-Driven Development.

Tantangan ini diperberat oleh keterbatasan sumber daya komputasi jika

menggunakan model AI secara lokal. Penelitian ini bertujuan membangun

otomatisasi unit test melalui ekstensi Chrome yang terintegrasi dengan layanan API

GroqCloud untuk efisiensi komputasi. Metode pengembangan menggunakan

Extreme Programming dengan arsitektur sistem berbasis Manifest V3 dan beberapa

model Generative AI seperti contoh Mistral-saba-24b. Hasil evaluasi bahwa

penggunaan format prompting mampu meningkatkan performa model secara

signifikan dibandingkan tanpa pengondisian prompt. Model Mistral-saba-24b

memperoleh nilai BLEU sebesar 0,6146, ROUGE-1 sebesar 0,7267, ROUGE-2

sebesar 0,6674, dan ROUGE-L sebesar 0,7014, yang mengindikasikan kemampuan

model dalam menghasilkan unit test dengan tingkat kemiripan leksikal dan

struktural yang tinggi terhadap unit test referensi. Meskipun nilai Exact Match

masih berada pada 0%, hasil tersebut menunjukkan bahwa output yang dihasilkan

telah mendekati struktur dan konteks unit test yang diharapkan. Evaluasi usabilitas

menggunakan System Usability Scale (SUS) terhadap 45 responden menghasilkan

skor 65,12 yang tergolong Marginally Acceptable. Hal ini mengindikasikan bahwa

sistem secara fungsional dapat diterima pengguna, namun memerlukan peningkatan

pengalaman pengguna untuk mencapai tingkat penerimaan yang optimal.

Kata Kunci: Generative AI, Golang, Unit Test Generator, Chrome Extension,

GroqCloud

vi

ABSTRACT

Manual unit test creation within the Golang ecosystem is often complex and time-

consuming, hindering the efficiency of Test-Driven Development implementation.

This challenge is further exacerbated by computational resource constraints when

deploying AI models locally. This study aims to develop unit test automation

through a Chrome extension integrated with the GroqCloud API to ensure

computational efficiency. The development methodology employs Extreme

Programming, utilizing a Manifest V3-based system architecture and several

Generative AI models, such as Mistral-saba-24b. The evaluation results indicate

that the use of structured prompting significantly improves model performance

compared to approaches without prompt conditioning. The Mistral-saba-24b

model achieved a BLEU score of 0.6146, ROUGE-1 of 0.7267, ROUGE-2 of

0.6674, and ROUGE-L of 0.7014, indicating its capability to generate unit tests

with a high degree of lexical and structural similarity to referenceunit tests.

Although the Exact Match score remains at 0%, the generated outputs closely

approximate the expected structure and context of unit tests.Usability evaluation

using the System Usability Scale (SUS) involving 45 respondents yielded a score of

65.12, classified as "Marginally Acceptable." This indicates that while the system

is functionally acceptable to users, it requires improvements user experience

aspects to achieve an optimal level of acceptance.

Keywords: Generative AI, Golang, Unit Test Generator, Chrome Extension,

GroqCloud.

vii

KATA PENGANTAR

Puja dan puji syukur kehadirat Allah SWT yang telah memberikan rahmat

dan hidayah-Nya sehingga penulis dapat memulai mengerjakan sampai

menyelesaikan tugas akhir yang berjudul “Rancang Bangun Extension Chrome

untuk Golang Unit Test Generator dengan Model Bahasa Generative AI.” Sholawat

serta salam senantiasa tercurahkan kepada baginda Nabi Muhammad SAW, yang

telah memberikan syafaat serta teladan bagi umat islam dalam menuntut ilmu dan

mengamalkannya.

 Tersusunnya tugas akhir ini tidak lepas dari dukungan berbagai pihak yang

telah memberikan semangat, bimbingan, dan kontribusi selama proses penyusunan.

Oleh karena itu, dengan kerendahan hati, penulis menyampaikan ucapan terima

kasih yang sebesar-besarnya kepada:

1. Bapak Prof. Noorhaidi Hasan, S.Ag., M.A., M.Phil., Ph.D., selaku Rektor

Universitas Islam Negeri Sunan Kalijaga Yogyakarta.

2. Ibu Prof. Dr. Dra. Hj. Khurul Wardati, M.Si., selaku Dekan Fakultas Sains

dan Teknologi Universitas Islam Negeri Sunan Kalijaga Yogyakarta.

3. Bapak Muhammad Mustakim, S.T., M.T., selaku Ketua Program Studi

Informatika Fakultas Sains dan Teknologi Universitas Islam Negeri Sunan

Kalijaga Yogyakarta.

4. Bapak Ir. Muhammad Didik Rohmad Wahyudi, S.T., M.T., selaku Dosen

Pembimbing Tugas Akhir yang telah meluangkan waktu untuk membantu

dan mengarahkan selama proses penulisan tugas akhir.

5. Bapak Eko Hadi Gunawan, M.ENG., selaku Dosen Pembimbing Akademik

yang telah membantu penulis selama perkuliahan.

6. Seluruh Dosen dan Karyawan Program Studi Informatika UIN Sunan

Kalijaga yang telah memberikan ilmu dan bantuan selama perkuliahan.

7. Kedua orang tua penulis Bapak Sudiro dan Ibu Sri Astuti yang telah

memberikan dukungan materi dan moral kepada penulis hingga dapat

vii

menempuh pendidikan tinggi agar menjadi pribadi yang berkontribusi pada

negara.

8. Seluruh teman Informatika yang membantu penulis selama perkuliahan

terutama teman Informatika 2021 yang telah menjadi saksi perjuangan

penulis pada saat perkuliahan.

Tugas akhir ini tidak terlepas dari kesalahan dan kekurangan kualitas materi.

Untuk itu, mohon kritik dan saran yang membangun agar dapat membawa manfaat

bagi pembaca. Semoga tugas akhir ini dapat memberikan pengetahuan yang baru

dan dapat dijadikan referensi pembaca untuk kedepannya.

Yogyakarta, 28 Mei 2025

 Penulis

Rizal Darusman

NIM.21106050080

ix

DAFTAR ISI

HALAMAN JUDUL ... i

PENGESAHAN TUGAS AKHIR .. ii

SURAT PERSETUJUAN TUGAS AKHIR .. iii

SURAT PERNYATAAN KEASLIAN TUGAS AKHIR.. iv

ABSTRAK .. v

ABSTRACT ... vi

KATA PENGANTAR .. vii

DAFTAR ISI .. ix

DAFTAR GAMBAR ... xi

DAFTAR TABEL ... xii

BAB I PENDAHULUAN .. 1

1.1 Latar Belakang ... 1

1.2 Rumusan Masalah ... 5

1.3 Tujuan .. 5

1.4 Manfaat .. 5

1.5 Batasan Masalah .. 6

BAB II KAJIAN PUSTAKA .. 7

2.1 Bahasa Pemrograman Golang ... 7

2.2 Google Chrome Extension... 9

2.3 Unit Test .. 11

2.4 Test-Driven Development ... 12

2.5 Generative Artificial Intelligence .. 15

2.6 Groq AI .. 15

2.7 Metode Extreme Programming ... 19

BAB III METODE PENGEMBANGAN SISTEM .. 21

3.1 Alat dan Bahan .. 21

3.2 Metode Pengembangan.. 22

3.3 Tahapan Pengembangan .. 24

BAB IV PERANCANGAN DAN IMPLEMENTASI SISTEM 26

4.1. Iterasi Pengembangan Pertama .. 26

4.1.1. Perencanaan (Planning) Iterasi Pertama ... 26

x

4.1.2. Perancagan (Design) Iterasi Pertama .. 29

4.1.3. Implementasi Kode (Coding) Iterasi Pertama ... 38

4.1.4. Pengujian (Testing) Iterasi Pertama .. 45

4.1.5. Evaluasi Acceptance Test Criteria Iterasi Pertama 47

4.2. Iterasi Pengembangan Kedua .. 48

4.2.1. Perencanaan (Planning) Iterasi Kedua .. 48

4.2.2. Perancangan (Design) Iterasi Kedua ... 51

4.2.3. Implementasi Kode (Coding) Iterasi Kedua ... 55

4.2.4. Pengujian (Testing) Iterasi Kedua ... 60

4.2.5. Evaluasi Acceptance Test Criteria Iterasi Kedua 63

4.3. Iterasi Pengembangan Ketiga .. 64

4.3.1. Perencanaan (Planning) Iterasi Ketiga ... 64

4.3.2. Perancangan (Design) Iterasi Ketiga .. 67

4.3.3. Implementasi Kode (Coding) Iterasi Ketiga ... 72

4.3.4. Pengujian (Testing) Iterasi Ketiga .. 80

4.3.5. Evaluasi Acceptance Test Criteria Iterasi Kedua 81

4.4. Pengujian Praktik Test-Driven Development terhadap Output Model 83

4.5. Evaluasi ... 93

4.5.1. Evaluasi Model Bahasa berdasarkan Dataset ... 93

4.5.2. Evaluasi Hasil Kode Unit Test berdasarkan Dataset 99

4.5.3. Evaluasi Proyek Ekstensi Chrome Golang Unit Test Generator 102

BAB V KESIMPULAN DAN SARAN .. 112

5.1. Kesimpulan .. 112

5.2. Saran .. 112

DAFTAR PUSTAKA ... 114

LAMPIRAN .. 118

RIWAYAT HIDUP .. 119

xi

DAFTAR GAMBAR

Gambar 2.1 Terminal Eksekusi TestHelloName.go .. 9

Gambar 2.2 Arsitektur Google Chrome Extension ... 10

Gambar 2.3 Tahapan Test-Driven Development ... 13

Gambar 2.4 Hasil Eksekusi unit test test.py .. 15

Gambar 2.5 Grafik Latency vs Throughput terhadap layanan inferensi model. 16

Gambar 2.6 Grafik Throughput terhadap layanan inferensi model ... 17

Gambar 2.7 Grafik Total Response Time terhadap layanan inferensi model 18

Gambar 2.8 Metode Extreme Programming ... 20

Gambar 4.1 Side Panel Feature..30

Gambar 4.2 Dashboard Settings .. 31

Gambar 4.3 Diagram Arsitektur Sistem .. 32

Gambar 4.4 Activity Diagram Upload File Go ... 34

Gambar 4.5 Activity Diagram Input Prompt ... 35

Gambar 4.6 Use Case Diagram Golang Unit Test Generator .. 37

Gambar 4.7 Manage Extension Chrome ... 42

Gambar 4.8 Halaman Chrome://extensions ... 42

Gambar 4.9 Deskripsi Golang Unit Test Generator Ekstensi Chrome .. 43

Gambar 4.10 UI Side Panel ... 43

Gambar 4.11 Refactoring UI Final .. 45

Gambar 4.12 Activity Diagram Output Prompt .. 52

Gambar 4.13 Activity Diagram Download Unit Test File .. 53

Gambar 4.14 Activity Diagram Selected Model ... 54

Gambar 4.15 UI untuk file-generator.js .. 55

Gambar 4.16 Light/Dark Mode ... 56

Gambar 4.17 Memilih Model Generative AI .. 57

Gambar 4. 18 Output model gemma-9b-it .. 58

Gambar 4.19 Output UI tag <think> ... 59

Gambar 4.20 Output UI Model Deepseek ... 59

Gambar 4.21 Activity Diagram Riwayat Chat .. 68

Gambar 4.22 Activity Diagram Update Profile User .. 69

Gambar 4.23 Activity Diagram Benchmark Unit Test Gen .. 70

Gambar 4.24 Activity Diagram Panduan Pengguna .. 71

Gambar 4.25 Activity Diagram Panduan TDD ... 72

Gambar 4.26 Dashboard Halaman Options ... 73

Gambar 4. 27 Chat History ... 74

Gambar 4. 28 Model Benchmark Unit Test .. 75

Gambar 4.29 Panduan Unit Testing .. 75

Gambar 4.30 Panduan TDD .. 76

Gambar 4.31 Panduan Pengguna .. 76

Gambar 4.32 Pengecekan Output Fungsi Mathbasic dengan Tipe Data Integer dan bukan Integer 86

Gambar 4.33 Pass by value dengan nilai dari tipe data selain integer ... 87

Gambar 4.34 Iterasi Pertama Unit Test Deepseek ... 89

Gambar 4.35 Iterasi Pertama Unit Test Mistral ... 90

Gambar 4.36 Iterasi Pertama Unit Test Llama .. 90

Gambar 4.37 Error di Iterasi Pertama pada Gemma ... 91

xii

DAFTAR TABEL

Tabel 3.1 Spesifikasi Google Collab... 21

Tabel 3.2 Tahapan Pengembangan Sistem ... 24

Tabel 4.1 Kebutuhan Fungsional Iterasi Pertama ... 27

Tabel 4.2 Kebutuhan Non Fungsional Iterasi Pertama ... 28

Tabel 4.3 Acceptance Test Criteria Iterasi Pertama .. 29

Tabel 4.4 Response Model Mixtral-8x-7b-32768 ... 41

Tabel 4.5 Hasil Pengujian Black Box Iterasi Pertama .. 46

Tabel 4. 6 Kebutuhan Fungsional Iterasi Kedua ... 48

Tabel 4.7 Kebutuhan Non Fungsional Iterasi Kedua .. 49

Tabel 4.8 Acceptance Test Criteria Iterasi Kedua .. 50

Tabel 4.9 Hasil Pengujian Black Box Iterasi Kedua ... 61

Tabel 4.10 Kebutuhan Fungsional Iterasi Ketiga .. 65

Tabel 4.11 Kebutuhan Non Fungsional Iterasi Ketiga .. 66

Tabel 4.12 Acceptance Test Criteria Iterasi Ketiga .. 66

Tabel 4.13 Struktur file di folder options .. 77

Tabel 4. 14 Struktur Folder Options Hasil Refactoring .. 78

Tabel 4.15 Black Box Testing Iterasi Ketiga .. 81

Tabel 4.16 Format input untuk generate unit test ... 87

Tabel 4.17 Evaluasi Output Unit Test Terhadap Model dengan Praktik TDD 92

Tabel 4.18 Hasil Evaluasi Matrik Model Bahasa terhadap Dataset golang-test-from-stack

 .. 96

Tabel 4.19 Format Prompting ... 98

Tabel 4.20 Matriks Evaluasi dengan Format Prompting .. 98

Tabel 4.21 Evaluasi Hasil Unit Test ... 101

Tabel 4.22 Daftar Pernyataan System Usability Scale (SUS) ... 104

Tabel 4.23 Data Awal Hasil SUS dari Responden .. 105

Tabel 4.24 Perhitungan Skor System Usability Scale ... 107

Tabel 4.25 Skala Penilaian SUS Jeff Sauro .. 109

1

BAB I PENDAHULUAN

PENDAHULUAN

1.1 Latar Belakang

Beberapa tahun terakhir, pendekatan dan metodologi dalam pengembangan

perangkat lunak menghasilkan sistem yang andal, efisien, dan mudah dipelihara.

Seiring meningkatnya kompleksitas sistem , kebutuhan pengguna dan tekanan

waktu rilis fitur atau produk perangkat lunak, kualitas pengembangan perangkat

lunak menjadi aspek yang krusial. Oleh karena itu, diperlukan praktik-praktik yang

terbaik untuk menggunakan metode pengembangan perangkat lunak agar

pengembang atau developer melakukan praktik secara konsisten untuk menjamin

keandalan produk yang dihasilkan dari alur metode pengembangan perangkat lunak

yang dipilih. Salah satu aspek penting dalam menjamin kualitas perangkat lunak

adalah proses pengujian (testing), khususnya pada level unit test. Unit test tidak

hanya membantu mendeteksi kesalahan sejak awal, tetapi juga memudahkan proses

refactoring serta dokumentasi code logic.

Seiring waktu, muncul berbagai pendekatan pengujian otomatis yang

terintegrasi langsung dalam alur pengembangan perangkat lunak. Dalam praktik

pengembangan perangkat lunak modern, pendekatan Test-Driven Development

menjadi metode yang efektif untuk meningkatkan kualitas kode yang dibuat dan

meminimalisir kesalahan sejak tahap awal pengembangan. TDD mendorong

pengembang untuk menulis unit test sebelum mengimplementasikan fungsi atau

fitur yang akan dibuat pada logika kode program. Unit test berfungsi sebagai

pedoman sekaligus jaminan bahwa setiap bagian dari kode berperilaku sesuai

dengan harapan atau dokumentasi kode program atau fitur yang dibuat. Dengan

mengimplementasikan praktik Test-Driven Development diharapkan sistem tidak

memiliki bug atau error yang mempengaruhi kegagalan fungsi kode pemrograman

dan kinerja perangkat lunak[1]. Selain itu, diharapkan proses melakukan

automating testing dengan praktik tersebut berjalan dengan lancar sebelum

melanjutkan pengujian integrasi komponen-komponen yang ada pada perangkat

lunak[2].

https://www.zotero.org/google-docs/?wq1rh9
https://www.zotero.org/google-docs/?sJp5qL

2

Bahasa pemrograman Go atau Golang, yang dikembangkan oleh Google,

telah menjadi salah satu bahasa pemrograman populer untuk pengembangan sistem

backend berskala besar seperti membangun aplikasi e-commerce[3]. Tujuan dari

proyek Golang yang dikembangkan oleh Google adalah untuk mengeliminasi dan

rumitnya proses pengembangan perangkat lunak di Google, sehingga membuat

proses tersebut menjadi lebih produktif dan scalable. Bahasa ini dirancang oleh dan

untuk orang-orang yang menulis serta membaca, melakukan debug dan memelihara

sistem perangkat lunak berskala besar. Oleh karena itu, tujuan utama Go bukanlah

untuk melakukan penelitian dalam desain bahasa pemrograman, melainkan

meningkatkan lingkungan kerja bagi para perancangnya dan rekan-rekan mereka.

Go lebih berfokus pada pemrograman untuk merekayasa perangkat lunak

daripada bahasa untuk penelitian bahasa pemrograman [4]. Golang juga memiliki

library atau pustaka bawaan untuk pengujian (package testing), sehingga

mendukung praktik pengujian perangkat lunak secara native. Namun, dibalik

kemudahannya, proses penulisan unit test secara manual tetap membutuhkan

ketelitian tinggi dan seringkali menjadi beban tersendiri, terutama bagi

pengembang yang masih mengenal ekosistem pemrograman Go atau sedang fokus

pada pengembangan fitur yang harus diselesaikan juga. Apalagi dengan banyaknya

kode pemrograman yang ditulis diikuti dengan kode unit test yang harus dibuat

juga. Tantangan tersebut terjadi pada pendekatan Test-Driven Development yang

mengharuskan pengujian dilakukan sebelum implementasi [5] dan semakin

dirasakan dalam bahasa Go yang walaupun memiliki testing bawaan, namun

menuntut eksplisitasi kode pengujian yang signifikan.

Dengan pesatnya teknologi kecerdasan buatan , khususnya dalam bidang

Natural Language Processing (NLP)[6], munculah pendekatan yang dikenal

sebagai Generative Language Models dan Large Language Models , seperti

ChatGPT dengan berbagai LLM atau GLM yang dipakai seperti o1-mini, GPT-4,

dan model sejenis lainnya. Model-model ini mampu memahami instruksi dari

dalam bahasa alami atau input menghasilkan teks atau kode program yang sesuai

dengan konteks. Salah satu yang paling menonjol dengan pemanfaatan model

bahasa ini pada proses code generation[7], yaitu kemampuan menghasilkan kode

https://www.zotero.org/google-docs/?XIAMSf
https://www.zotero.org/google-docs/?5eU7pA
https://www.zotero.org/google-docs/?jxha69
https://www.zotero.org/google-docs/?tZ5l63
https://www.zotero.org/google-docs/?pbqjOE

3

sumber dari input berbasis teks. Kemampuan ini tidak hanya pada penulisan kode

program, tetapi juga dapat diterapkan dalam pembuatan unit test secara otomatis.

Dengan memanfaatkan model bahasa generative, proses pembuatan unit test dapat

diotomatisasi. Model seperti yang dimiliki oleh ChatGPT mampu membaca dan

memahami logika fungsi dalam kode, kemudian menghasilkan kode dari skenario

pengujian yang dibuat oleh developer. Hal ini membuka peluang besar dalam

mempercepat siklus pengembangan perangkat lunak serta mengurangi waktu untuk

melakukan pengujian manual.

Penerapan model bahasa ini semakin potensial apabila diintegrasikan

langsung dengan perangkat lunak yang membutuhkan model bahasa sebagai output

dari permintaan input teks dari aplikasi khususnya pada lingkungan aplikasi

peramban internet seperti Chrome. Dengan memanfaatkan Chrome untuk membuat

aplikasi berupa Ekstensi bisa menerapkan model bahasa sebagai kekuatan utama

untuk mengintegrasikan Generative AI atau Large Language Models yang mana

membuat aplikasi untuk proses pembuatan unit test secara otomatis melalui

Ekstensi Chrome. Dengan pendekatan ini, proses pembuatan unit test secara

otomatis langsung dari browser, tanpa perlu berpindah alat atau lingkungan

pengembangan sehingga developer tidak perlu membuka website ChatGPT dengan

berbagai tab baru yang mana bisa berfokus pada dokumen skenario pengujian

dengan memanfaatkan fitur-fitur dari Ekstensi Chrome seperti side panel dengan

membagi layar menjadi dua bagian[8].

Pada penelitian yang membahas berbagai integrasi LLM ke perangkat lunak

disebutkan di paper “Unifying the Perspective of NLP and Software Engineering:

A Survey on Language Models for Code”[6] di section 2.1.3 Testing and Analysis

pada bagian Unit Test Generations terdapat beberapa penelitian yang menerapkan

integrasi AI dengan metode Non-neural, Non-Transformer neural, dan

Transformer-based. Dalam kategori pendekatan atau algoritma berbasis

Transformer, terdapat setidaknya 13 proyek penelitian yang mengimplementasikan

Large Language Models (LLM) untuk tugas unit test generation. Beberapa

diantaranya adalah: AthenaTest[9][10], TestPilot[11], A3Test[12], TeCo[13],

CodaMosa[14], ChatTester[15], ChatUniTest[16] [17], PBT-GPT[18],

https://www.zotero.org/google-docs/?4alLDM
https://www.zotero.org/google-docs/?2VZKuk
https://www.zotero.org/google-docs/?a8Vxwp
https://www.zotero.org/google-docs/?eLeK3k
https://www.zotero.org/google-docs/?4Q1sAY
https://www.zotero.org/google-docs/?eMu1hZ
https://www.zotero.org/google-docs/?a0wwC5
https://www.zotero.org/google-docs/?pyHkxu
https://www.zotero.org/google-docs/?XheWEB
https://www.zotero.org/google-docs/?EGmvTg

4

MuTAP[19], RLSQM[20], CoverUp[21], dan TELPA[22]. Proyek-proyek tersebut

memanfaatkan model bahasa yang telah dilatih sebelumnya (pre-trained language

models), seperti BART Transformer, untuk menghasilkan unit test secara otomatis.

Selain itu, masing-masing proyek menggunakan dataset tertentu sebagai bagian dari

proses pelatihan dan evaluasi model. Sebagai contoh, proyek AthenaTest

menggunakan dataset Method2Test[23], yang dibuat dalam bahasa pemrograman

Java, untuk melakukan fine tuning dan evaluasi terhadap model BART dalam

rangka meningkatkan pemahaman dan relevansi data unit test yang dihasilkan.

 Namun, pendekatan integrasi LLM secara langsung ke dalam proyek

perangkat lunak, khususnya pada ekstensi browser seperti Chrome, dapat

menimbulkan tantangan signifikan terhadap kinerja sistem. Jika model LLM yang

telah melalui proses fine tuning dioperasikan secara lokal (on-device), proses

inferensi dari model tersebut akan mengkonsumsi sumber daya komputer pengguna

dalam jumlah besar, seperti RAM dan CPU. Hal ini dapat berdampak pada

performa keseluruhan perangkat, menjadikan pengalaman pengguna tidak efektif,

terutama bagi pengguna dengan spesifikasi perangkat terbatas.

 Sebagai solusi terhadap permasalahan ini, pendekatan yang lebih efisien dan

ringan adalah dengan menggunakan model LLM berbasis cloud melalui API.

Dalam pengembangan aplikasi ekstensi Chrome yang dilakukan pada penelitian ini,

digunakan layanan API gratis dari GroqAI[24], yang memungkinkan integrasi

LLM melalui kontrak endpoint yang telah ditentukan. Dengan pendekatan ini,

proses pemanggilan dan generation respons dilakukan di server Groq, sehingga

tidak membebani perangkat pengguna. Selain itu, arsitektur ini juga memudahkan

pengelolaan sumber daya dan memungkinkan skalabilitas yang lebih baik pada

aplikasi berbasis ekstensi browser. Pada model yang dipilih, penulis menggunakan

varian Deepseek-r1-distill-llama-70b, Mistral-saba-24b, Gemma2-9b-it, dan

LLaMA-3.3-70b-versatile. Model-model dengan parameter tinggi ini dipilih karena

memiliki kemampuan penalaran (reasoning) dan pemahaman konteks kode yang

mendalam, yang sangat krusial untuk menghasilkan unit test Golang yang valid dan

kompleks. Dukungan infrastruktur LPU dari Groq memastikan model besar ini

https://www.zotero.org/google-docs/?pSdnGN
https://www.zotero.org/google-docs/?BWLHuD
https://www.zotero.org/google-docs/?zXRzMm
https://www.zotero.org/google-docs/?BbAmAF
https://www.zotero.org/google-docs/?0SYSWS
https://www.zotero.org/google-docs/?9IkFeG

5

tetap dapat memberikan respons cepat (real-time) tanpa membebani kinerja

perangkat pengguna.

1.2 Rumusan Masalah

Dari permasalahan yang diuraikan dalam latar belakang, penulis

merumuskan masalah: Bagaimana penerapan Generative AI atau Large Language

Models dari provider GroqAI melalui ekstensi Chrome agar dapat mengotomatisasi

pembuatan unit test Golang untuk meningkatkan efisiensi dalam Test Driven

Development?"

1.3 Tujuan

Penelitian ini bertujuan untuk membangun sebuah unit test generator

berbasis ekstensi Chrome yang mengintegrasikan Large Language Models (LLM).

Sistem ini berfungsi menerima input kode program Go dan menghasilkan unit test

secara otomatis, sehingga dapat meningkatkan efisiensi waktu, menjaga

standarisasi kode, serta mendukung penerapan metodologi Test-Driven

Development (TDD) tanpa perlu penulisan manual.

1.4 Manfaat

Implementasi ekstensi Chrome untuk otomatisasi pembuatan unit test

Golang berbasis Generative AI diharapkan memberikan beberapa manfaat berikut:

1. Meningkatkan efisiensi proses Test-Driven Development dengan mengurangi

waktu penulisan unit test secara manual dan memudahkan pengembang pemula

untuk mempraktikkan Test-Driven Development tanpa memahami secara

mendalam struktur penulisan unit test di Golang.

2. Menjamin konsistensi dan kualitas skenario pengujian karena test case

dihasilkan dari model bahasa yang sudah terlatih untuk code generation dengan

milyaran parameter.

3. Mengurangi beban kerja pengembang, sehingga mereka dapat lebih fokus pada

desain dan implementasi fitur utama.

6

4. Menyediakan benchmark dan data empiris bagi peneliti lain untuk

mengevaluasi kinerja model bahasa pada tugas unit test generation.

5. Jika pengguna membuka dokumen source code atau skenario pengujian di

browser (misalnya di GitHub, GitLab, atau platform dokumentasi internal),

ekstensi ini dapat membuka side panel dengan mengaktifkan ekstensi chrome

yang dibuat.

1.5 Batasan Masalah

Agar penelitian ini berjalan secara terfokus dan terarah, penulis menetapkan

beberapa batasan sebagai ruang lingkup dalam pengembangan sistem, yaitu sebagai

berikut:

1. Penelitian ini hanya difokuskan pada pembuatan unit test untuk kode yang

ditulis menggunakan bahasa pemrograman Go (Golang). Bahasa pemrograman

lain tidak menjadi bagian dari ruang lingkup penelitian ini.

2. Model bahasa generatif yang digunakan dalam penelitian ini terbatas pada

model yang tersedia melalui layanan API GroqAI, dengan fokus spesifik pada

varian: Deepseek-r1-distill-llama-70b, Mistral-saba-24b, Gemma2-9b-it, dan

LLaMA-3.3-70b-versatile. Pengujian dan perbandingan output unit test dari

model-model tersebut dilakukan dengan mengikuti batasan rate limit (batas laju

permintaan) dan kuota token yang berlaku pada layanan tingkat gratis (free

tier). Fitur tambahan seperti debugging, refactoring, atau manajemen proyek

tidak termasuk dalam cakupan pengembangan.

3. Unit test yang dihasilkan mungkin atau akan mengikuti standar umum

pengujian di Golang, termasuk penggunaan pustaka bawaan (testing) dan

pustaka pihak ketiga yang populer. Namun demikian, output dari masing-

masing model bahasa dapat bervariasi, tergantung pada arsitektur model,

prompt, dan respons yang dihasilkan dari masing-masing API.

4. Penelitian ini berfokus pada lingkungan browser Google Chrome, untuk

lingkungan browser lainnya seperti Microsoft Edge, Mozilla Firefox, atau

lainnya tidak menjadi bagian dari ruang lingkup penelitian dan tidak dievaluasi

dalam studi ini.

112

BAB V KESIMPULAN DAN SARAN

KESIMPULAN DAN SARAN

5.1. Kesimpulan

 Berdasarkan hasil penelitian yang telah dilakukan, disimpulkan bahwa

proyek Rancang Bangun Ekstensi Chrome untuk Golang Unit Test Generator

dengan Model Bahasa Generative AI berhasil dikembangkan dan

diimplementasikan dengan baik. Sistem ekstensi ini mampu mengotomatisasi

pembuatan kode unit test pada bahasa pemrograman Golang melalui integrasi

dengan layanan Generative AI GroqCloud. Berdasarkan hasil pengujian black-box,

seluruh fungsi utama seperti unggah file, pemilihan model, penyimpanan riwayat,

dan antarmuka pengguna berjalan sesuai dengan kebutuhan yang telah dirancang.

 Dari hasil evaluasi model bahasa terhadap dataset golang-test-from-the-

stack , diperoleh bahwa model Deepseek-R1-distill-LLaMA menunjukan performa

yang stabil dan akurat dalam menghasilkan unit test yang sesuai dengan referensi,

dengan tingkat keberhasilan kompilasi mencapai lebih dari 90 persen serta line

coverage dan branch coverage diatas 95 persen. Selain itu, hasil System Usability

Scale (SUS) dari 45 responden memperoleh nilai rata-rata 65,12 yang termasuk

diterima namun terdapat perbaikan, yang mana menunjukan ekstensi ini cukup

digunakan dan memiliki tingkat kegunaan yang sedang.

5.2. Saran

Penelitian ini masih memiliki ruang untuk pengembangan lebih lanjut.

Berdasarkan evaluasi dan tingkat kegunaan sistem yang berada pada kategori

Marginally, disarankan agar penelitian berikutnya dilakukan pada peningkatan

pada aspek kemudahan penggunaan. Pengembangan dapat difokuskan pada

penyederhanaan alur interaksi pengguna, seperti navigasi yang lebih intuitif,

pengaturan otomatis untuk pemilihan model dari kesukaan pengguna, serta

penambahan panduan interaktif (tutorial on-screen) agar pengguna baru lebih

mudah memahami fungsi setiap fitur tanpa harus membaca dokumentasi secara

113

terpisah. Selanjutnya mengonsumsi respons dari model bahasa dengan UI yang

lebih intuitif.

Selain fokus pada peningkatan usability, sistem mungkin dapat

dikembangkan dengan fitur integrasi eksternal, misalnya koneksi langsung ke

github atau VS Code, dimana pengguna tidak perlu mengimpor kode program

hanya menjalankan ekstensi saja sudah mengenerate file kode unit test.

114

DAFTAR PUSTAKA

[1] A. Bandi, P. V. S. R. Adapa, and Y. E. V. P. K. Kuchi, “The Power of Generative AI:

A Review of Requirements, Models, Input–Output Formats, Evaluation Metrics, and

Challenges,” Future Internet, vol. 15, no. 8, p. 260, Jul. 2023, doi: 10.3390/fi15080260.

[2] A. Bulajic, S. Sambasivam, and R. Stojic, “Overview of the Test Driven Development

Research Projects and Experiments,” presented at the InSITE 2012: Informing Science

+ IT Education Conference, 2012, pp. 165–187. doi: 10.28945/1647.

[3] A. M. Dakhel, A. Nikanjam, V. Majdinasab, F. Khomh, and M. C. Desmarais,

“Effective Test Generation Using Pre-trained Large Language Models and Mutation

Testing,” Aug. 31, 2023, arXiv: arXiv:2308.16557. doi: 10.48550/arXiv.2308.16557.

[4] A. Rokhman, “Dicoding TDD,” Mengenal Testing dalam Dunia Pengembangan

Software. Accessed: Jun. 13, 2025. [Online]. Available:

https://www.dicoding.com/blog/mengenal-testing-dalam-dunia-pengembangan-

software/

[5] A. S. Gills, “Definition Go Programming Language,” What is the Go or Golang

programming language? Accessed: Jun. 11, 2025. [Online]. Available:

https://www.techtarget.com/searchitoperations/definition/Go-programming-language

[6] B. Maureen, Worldwide Developer Population Grows to 27 Million. Accessed: Oct. 27,

2025. [Online]. Available:

https://evansdata.com/press/viewRelease.php?pressID=365

[7] B. Steenhoek, M. Tufano, N. Sundaresan, and A. Svyatkovskiy, “Reinforcement

Learning from Automatic Feedback for High-Quality Unit Test Generation,” Jan. 06,

2025, arXiv: arXiv:2310.02368. doi: 10.48550/arXiv.2310.02368.

[8] C. Informatika, Yusuf Muharam, and Taufik Hidayat, “PENGEMBANGAN

APLIKASI BACK-END E-COMMERCE MENGGUNAKAN REST API GOLANG

UNTUK OPTIMALISASI KINERJA SERVER,” Comput. J. Inform., vol. 11, no. 01,

pp. 7–13, Jun. 2024, doi: 10.55222/computing.v11i01.1479.

[9] C. Yang, J. Chen, B. Lin, J. Zhou, and Z. Wang, “Enhancing LLM-based Test

Generation for Hard-to-Cover Branches via Program Analysis,” Apr. 07, 2024, arXiv:

arXiv:2404.04966. doi: 10.48550/arXiv.2404.04966.

[10] “Chrome Extension Stat,” Counting Chrome Extensions – Chrome Web Store

Statistics. Accessed: Jun. 12, 2025. [Online]. Available:

https://www.debugbear.com/blog/counting-chrome-extensions

https://www.dicoding.com/blog/mengenal-testing-dalam-dunia-pengembangan-software/
https://www.dicoding.com/blog/mengenal-testing-dalam-dunia-pengembangan-software/
https://www.techtarget.com/searchitoperations/definition/Go-programming-language
https://evansdata.com/press/viewRelease.php?pressID=365
https://www.debugbear.com/blog/counting-chrome-extensions

115

[11] “chrome for developers.” [Online]. Available:

https://developer.chrome.com/docs/extensions/reference/api/sidePanel

[12] “CodaMOSA,” CodaMOSA. [Online]. Available:

https://github.com/microsoft/codamosa

[13] F. Jonathan and M. A. I. Pakereng, “Test-Driven Development pada Pengembangan

Aplikasi Android untuk Memantau COVID-19,” IJCIT Indones. J. Comput. Inf.

Technol., vol. 6, no. 1, May 2021, doi: 10.31294/ijcit.v6i1.9502.

[14] “Go,” Go Programming Language (Introduction). Accessed: Jun. 11, 2025. [Online].

Available: https://www.geeksforgeeks.org/go-programming-language-introduction/

[15] “Golang Testing Documentation,” Add a Test. Accessed: Jun. 11, 2025. [Online].

Available: https://go.dev/doc/tutorial/add-a-test

[16] “Golang Testing Documentation,” testing. Accessed: Jun. 11, 2025. [Online].

Available: https://pkg.go.dev/testing

[17] “Groq AI,” Limits Models. Accessed: Jun. 21, 2025. [Online]. Available:

https://console.groq.com/dashboard/limits

[18] “Groq Inc.,” Groq – Accelerating AI Inference. Accessed: Jun. 10, 2025. [Online].

Available: https://groq.com/

[19] Groq Shows Promising Results in New LLM Benchmark, Surpassing Industry

Averages. Accessed: Jun. 20, 2025. [Online]. Available:

https://www.hpcwire.com/off-the-wire/groq-shows-promising-results-in-new-llm-

benchmark-surpassing-industry-averages/

[20] Groq, ArtificialAnalysis.ai LLM Benchmark Doubles Axis To Fit New Groq LPUTM

Inference Engine Performance Results. Accessed: Jun. 20, 2025. [Online]. Available:

https://groq.com/artificialanalysis-ai-llm-benchmark-doubles-axis-to-fit-new-groq-

lpu-inference-engine-performance-results/

[21] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage and adequacy,”

ACM Comput. Surv., vol. 29, no. 4, pp. 366–427, Dec. 1997, doi:

10.1145/267580.267590.

[22] J. A. Pizzorno and E. D. Berger, “CoverUp: Effective High Coverage Test Generation

for Python,” May 09, 2025. doi: 10.1145/3729398.

[23] J. Jiang, F. Wang, J. Shen, S. Kim, and S. Kim, “A Survey on Large Language Models

for Code Generation,” Nov. 10, 2024, arXiv: arXiv:2406.00515. doi:

10.48550/arXiv.2406.00515.

[24] J. Lennon, “Reason Learn Golang,” Top 5 Reasons Why You Should Learn Golang.

https://developer.chrome.com/docs/extensions/reference/api/sidePanel
https://github.com/microsoft/codamosa
https://www.geeksforgeeks.org/go-programming-language-introduction/
https://go.dev/doc/tutorial/add-a-test
https://pkg.go.dev/testing
https://console.groq.com/dashboard/limits
https://groq.com/
https://www.hpcwire.com/off-the-wire/groq-shows-promising-results-in-new-llm-benchmark-surpassing-industry-averages/
https://www.hpcwire.com/off-the-wire/groq-shows-promising-results-in-new-llm-benchmark-surpassing-industry-averages/
https://groq.com/artificialanalysis-ai-llm-benchmark-doubles-axis-to-fit-new-groq-lpu-inference-engine-performance-results/
https://groq.com/artificialanalysis-ai-llm-benchmark-doubles-axis-to-fit-new-groq-lpu-inference-engine-performance-results/

116

Accessed: Jun. 11, 2025. [Online]. Available: https://zerotomastery.io/blog/why-you-

should-learn-golang/

[25] K. Ardonov and R. Lavine, “Groq Funding Series,” Analysis: Groq computes a $300m

series C. Accessed: Jun. 20, 2025. [Online]. Available:

https://globalventuring.com/analysis-groq-computes-a-300m-series-c/

[26] K. Beck, Test-driven development: by example, 20. printing. in The Addison-Wesley

signature series. Boston: Addison-Wesley, 2015.

[27] L. Yang et al., “On the Evaluation of Large Language Models in Unit Test

Generation,” Sep. 25, 2024, arXiv: arXiv:2406.18181. doi:

10.48550/arXiv.2406.18181.

[28] M. Scapicchio and C. Stryker, “IBM Generative AI.” Accessed: Jun. 23, 2025.

[Online]. Available: https://www.ibm.com/think/topics/generative-ai

[29] M. Schäfer, S. Nadi, A. Eghbali, and F. Tip, “An Empirical Evaluation of Using Large

Language Models for Automated Unit Test Generation,” Dec. 11, 2023, arXiv:

arXiv:2302.06527. doi: 10.48550/arXiv.2302.06527.

[30] M. Tufano, D. Drain, A. Svyatkovskiy, S. K. Deng, and N. Sundaresan, “Unit Test

Case Generation with Transformers and Focal Context,” May 20, 2021, arXiv:

arXiv:2009.05617. doi: 10.48550/arXiv.2009.05617.

[31] M. Tufano, D. Drain, A. Svyatkovskiy, and N. Sundaresan, “Generating Accurate

Assert Statements for Unit Test Cases using Pretrained Transformers,” in Proceedings

of the 3rd ACM/IEEE International Conference on Automation of Software Test, May

2022, pp. 54–64. doi: 10.1145/3524481.3527220.

[32] “Manivest v2,” Manivest V2 Get Started. Accessed: Jun. 12, 2025. [Online].

Available: https://developer.chrome.com/docs/extensions/mv2/getstarted

[33] Microsoft, “methods2test.” doi: https://doi.org/10.1145/3524842.3528009.

[34] N. Pantelaios and A. Kapravelos, “Manifest V3 Unveiled: Navigating the New Era of

Browser Extensions,” Apr. 12, 2024. doi: 10.14722/madweb.2024.23080.

[35] P. Nie, R. Banerjee, J. J. Li, R. J. Mooney, and M. Gligoric, “Learning Deep Semantics

for Test Completion,” Mar. 07, 2023, arXiv: arXiv:2302.10166. doi:

10.48550/arXiv.2302.10166.

[36] P. Runeson, “A survey of unit testing practices,” IEEE Softw., vol. 23, no. 4, pp. 22–

29, Jul. 2006, doi: 10.1109/MS.2006.91.

[37] Quang, “golang-test-from-the-stack.” Hugging Face Datasets, 2025. doi:

https://huggingface.co/datasets/lqdunxgx2005/golang-test-from-the-stack.

https://zerotomastery.io/blog/why-you-should-learn-golang/
https://zerotomastery.io/blog/why-you-should-learn-golang/
https://globalventuring.com/analysis-groq-computes-a-300m-series-c/
https://www.ibm.com/think/topics/generative-ai
https://developer.chrome.com/docs/extensions/mv2/getstarted
https://doi.org/10.1145/3524842.3528009
https://huggingface.co/datasets/lqdunxgx2005/golang-test-from-the-stack

117

[38] R. Pike, “Go at Google,” Go at Google: Language Design in the Service of Software

Engineering. Accessed: Jun. 02, 2025. [Online]. Available:

https://go.dev/talks/2012/splash.article

[39] “Reason Golang,” Top 8 Reasons to learn Go Language in 2022. Accessed: Jun. 11,

2025. [Online]. Available: https://www.studytonight.com/post/top-reasons-to-learn-

go-language

[40] S. Alagarsamy, C. Tantithamthavorn, and A. Aleti, “A3Test: Assertion-Augmented

Automated Test Case Generation,” Feb. 20, 2023, arXiv: arXiv:2302.10352. doi:

10.48550/arXiv.2302.10352.

[41] T. is DASC, “medium,” Seven Golang Features you must know about. Accessed: Jun.

11, 2025. [Online]. Available: https://medium.com/@thisisdasc/seven-golang-

features-you-must-know-about-944485d413fe

[42] V. Garousi, M. Felderer, and F. N. Kılıçaslan, “A survey on software testability,” Inf.

Softw. Technol., vol. 108, pp. 35–64, Apr. 2019, doi: 10.1016/j.infsof.2018.12.003.

[43] V. Vikram, C. Lemieux, J. Sunshine, and R. Padhye, “Can Large Language Models

Write Good Property-Based Tests?,” Jul. 22, 2024, arXiv: arXiv:2307.04346. doi:

10.48550/arXiv.2307.04346.

[44] Y. Chen, Z. Hu, C. Zhi, J. Han, S. Deng, and J. Yin, “ChatUniTest: A Framework for

LLM-Based Test Generation,” May 07, 2024, arXiv: arXiv:2305.04764. doi:

10.48550/arXiv.2305.04764.

[45] Y. Tang, Z. Liu, Z. Zhou, and X. Luo, “ChatGPT vs SBST: A Comparative

Assessment of Unit Test Suite Generation,” Jul. 02, 2023, arXiv: arXiv:2307.00588.

doi: 10.48550/arXiv.2307.00588.

[46] Yoshi, “Architecture Chrome Extension,” Architecture of Chrome Extension.

Accessed: Jun. 12, 2025. [Online]. Available:

https://medium.com/@yoshi2586/architecture-of-chrome-extension-9188c026c069

[47] Z. Yuan et al., “No More Manual Tests? Evaluating and Improving ChatGPT for Unit

Test Generation,” May 19, 2024, arXiv: arXiv:2305.04207. doi:

10.48550/arXiv.2305.04207.

[48] Z. Zhang et al., “Unifying the Perspectives of NLP and Software Engineering: A

Survey on Language Models for Code,” Jun. 26, 2024, arXiv: arXiv:2311.07989. doi:

10.48550/arXiv.2311.07989.

https://go.dev/talks/2012/splash.article
https://www.studytonight.com/post/top-reasons-to-learn-go-language
https://www.studytonight.com/post/top-reasons-to-learn-go-language
https://medium.com/@thisisdasc/seven-golang-features-you-must-know-about-944485d413fe
https://medium.com/@thisisdasc/seven-golang-features-you-must-know-about-944485d413fe
https://medium.com/@yoshi2586/architecture-of-chrome-extension-9188c026c069

118

LAMPIRAN

Repository Golang Unit Test Generator: https://github.com/Rizald95/golang0-unit-

test

Repository Evaluasi: https://github.com/Rizald95/Golang0-unit-test-evaluation

Link Google Colab Evaluasi Bleu, Rouge, dan Exatch Match Part 1:

https://colab.research.google.com/drive/17nCGwniqyMNTacrZCQ0MoLqUPUse

_U7e?usp=sharing

Link Evaluasi BLEU, ROUGE, dan Exatch Match Part 2 :

https://colab.research.google.com/drive/1laj9Hl9_TedojkA5DsZ0o0fQDmLDyzG

C?usp=sharing

https://github.com/Rizald95/golang0-unit-test
https://github.com/Rizald95/golang0-unit-test
https://github.com/Rizald95/Golang0-unit-test-evaluation
https://colab.research.google.com/drive/17nCGwniqyMNTacrZCQ0MoLqUPUse_U7e?usp=sharing
https://colab.research.google.com/drive/17nCGwniqyMNTacrZCQ0MoLqUPUse_U7e?usp=sharing
https://colab.research.google.com/drive/1laj9Hl9_TedojkA5DsZ0o0fQDmLDyzGC?usp=sharing
https://colab.research.google.com/drive/1laj9Hl9_TedojkA5DsZ0o0fQDmLDyzGC?usp=sharing

119

RIWAYAT HIDUP

Nama : Rizal Darusman

Tempat, Tanggal Lahir : Wonosobo, 9 Mei 2002

No. Telephone : 089687973839

Email : rizalbario3@gmail.com

Alamat : Jalan Mandalika, Dusun Mandalika, Desa

Tanjunganom Kecamatan Kaliwiro, Kabupaten

Wonosobo, Kode Pos 56364

Riwayat Pendidikan : SDN 1 TANJUNGANOM

SMPN 1 KALIWIRO

SMAN 1 WONOSOBO

UIN SUNAN KALIJAGA YOGYAKARTA

Hobi : Makan, Tidur, Suka Suasana Tenang

Motto Hidup : Selama Manusia sudah cukup dan hidup tenang

artinya menang dalam menguasai kehidupan.

	HALAMAN JUDUL
	PENGESAHAN TUGAS AKHIR
	SURAT PERSETUJUAN TUGAS AKHIR
	SURAT PERNYATAAN KEASLIAN TUGAS AKHIR
	ABSTRAK
	ABSTRACT
	KATA PENGANTAR
	DAFTAR ISI
	DAFTAR GAMBAR
	DAFTAR TABEL
	BAB I PENDAHULUAN
	1.1 Latar Belakang
	1.2 Rumusan Masalah
	1.3 Tujuan
	1.4 Manfaat
	1.5 Batasan Masalah

	BAB V KESIMPULAN DAN SARAN
	5.1. Kesimpulan
	5.2. Saran

	DAFTAR PUSTAKA
	LAMPIRAN
	RIWAYAT HIDUP

