
i 

HALAMAN JUDUL 

TUGAS AKHIR 

 

RANCANG BANGUN EXTENSION CHROME UNTUK GOLANG 

UNIT TEST GENERATOR DENGAN MODEL BAHASA 

GENERATIVE AI 

Sebagai Memenuhi Persyaratan Mencapai Derajat Sarjana (S1) 

 

 

 

 

 

 

 

 

 

 

DISUSUN OLEH:  

RIZAL DARUSMAN 

NIM.21106050080 

 

 

PROGRAM STUDI INFORMATIKA 

FAKULTAS SAINS DAN TEKNOLOGI 

UNIVERSITAS ISLAM NEGERI SUNAN KALIJAGA 

YOGYAKARTA 

2025



ii 

PENGESAHAN TUGAS AKHIR

  



iii 

 

SURAT PERSETUJUAN TUGAS AKHIR

  



iv 

SURAT PERNYATAAN KEASLIAN TUGAS AKHIR

  



 

v 

ABSTRAK

 

Penulisan unit test secara manual dalam ekosistem Golang seringkali kompleks dan 

menyita waktu, yang menghambat efisiensi penerapan Test-Driven Development. 

Tantangan ini diperberat oleh keterbatasan sumber daya komputasi jika 

menggunakan model AI secara lokal. Penelitian ini bertujuan membangun 

otomatisasi unit test melalui ekstensi Chrome yang terintegrasi dengan layanan API 

GroqCloud untuk efisiensi komputasi. Metode pengembangan menggunakan 

Extreme Programming dengan arsitektur sistem berbasis Manifest V3 dan beberapa  

model Generative AI seperti contoh Mistral-saba-24b. Hasil evaluasi bahwa 

penggunaan format prompting mampu meningkatkan performa model secara 

signifikan dibandingkan tanpa pengondisian prompt. Model Mistral-saba-24b 

memperoleh nilai BLEU sebesar 0,6146, ROUGE-1 sebesar 0,7267, ROUGE-2 

sebesar 0,6674, dan ROUGE-L sebesar 0,7014, yang mengindikasikan kemampuan 

model dalam menghasilkan unit test dengan tingkat kemiripan leksikal dan 

struktural yang tinggi terhadap unit test referensi. Meskipun nilai Exact Match 

masih berada pada 0%, hasil tersebut menunjukkan bahwa output yang dihasilkan 

telah mendekati struktur dan konteks unit test yang diharapkan. Evaluasi usabilitas 

menggunakan System Usability Scale (SUS) terhadap 45 responden menghasilkan 

skor 65,12 yang tergolong Marginally Acceptable. Hal ini mengindikasikan bahwa 

sistem secara fungsional dapat diterima pengguna, namun memerlukan peningkatan 

pengalaman pengguna untuk mencapai tingkat penerimaan yang optimal. 

 

Kata Kunci: Generative AI, Golang, Unit Test Generator, Chrome Extension, 

GroqCloud 
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ABSTRACT

 

Manual unit test creation within the Golang ecosystem is often complex and time-

consuming, hindering the efficiency of Test-Driven Development implementation. 

This challenge is further exacerbated by computational resource constraints when 

deploying AI models locally. This study aims to develop unit test automation 

through a Chrome extension integrated with the GroqCloud API to ensure 

computational efficiency. The development methodology employs Extreme 

Programming, utilizing a Manifest V3-based system architecture and several 

Generative AI models, such as Mistral-saba-24b. The evaluation results indicate 

that the use of structured prompting significantly improves model performance 

compared to approaches without prompt conditioning. The Mistral-saba-24b 

model achieved a BLEU score of 0.6146, ROUGE-1 of 0.7267, ROUGE-2 of 

0.6674, and ROUGE-L of 0.7014, indicating its capability to generate unit tests 

with a high  degree of lexical and structural similarity to referenceunit tests. 

Although the Exact Match score remains at 0%, the generated outputs closely 

approximate the expected structure and context of unit tests.Usability evaluation 

using the System Usability Scale (SUS) involving 45 respondents yielded a score of 

65.12, classified as "Marginally Acceptable." This indicates that while the system 

is functionally acceptable to users, it requires improvements user experience 

aspects to achieve an optimal level of acceptance. 

 

Keywords: Generative AI, Golang, Unit Test Generator, Chrome Extension, 

GroqCloud. 
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BAB I  PENDAHULUAN 

PENDAHULUAN 

1.1 Latar Belakang 

Beberapa tahun terakhir, pendekatan dan metodologi dalam pengembangan 

perangkat lunak menghasilkan sistem yang andal, efisien, dan mudah dipelihara. 

Seiring meningkatnya kompleksitas sistem , kebutuhan pengguna dan tekanan 

waktu rilis fitur atau produk perangkat lunak, kualitas pengembangan perangkat 

lunak menjadi aspek yang krusial. Oleh karena itu, diperlukan praktik-praktik yang 

terbaik untuk menggunakan metode pengembangan perangkat lunak agar 

pengembang atau developer melakukan praktik secara konsisten untuk menjamin 

keandalan produk yang dihasilkan dari alur metode pengembangan perangkat lunak 

yang dipilih. Salah satu aspek penting dalam menjamin kualitas perangkat lunak 

adalah proses pengujian (testing), khususnya pada level unit test. Unit test tidak 

hanya membantu mendeteksi kesalahan sejak awal, tetapi juga memudahkan proses 

refactoring serta dokumentasi code logic.  

Seiring waktu, muncul berbagai pendekatan pengujian otomatis yang 

terintegrasi langsung dalam alur pengembangan perangkat lunak. Dalam praktik 

pengembangan perangkat lunak modern, pendekatan Test-Driven Development 

menjadi metode yang efektif untuk meningkatkan kualitas kode yang dibuat dan 

meminimalisir kesalahan sejak tahap awal pengembangan. TDD mendorong 

pengembang untuk menulis unit test sebelum mengimplementasikan fungsi atau 

fitur yang akan dibuat pada logika kode program. Unit test berfungsi sebagai 

pedoman sekaligus jaminan bahwa setiap bagian dari kode berperilaku sesuai 

dengan harapan atau dokumentasi kode program atau fitur yang dibuat. Dengan 

mengimplementasikan praktik Test-Driven Development diharapkan sistem tidak 

memiliki bug atau error yang mempengaruhi kegagalan fungsi kode pemrograman 

dan kinerja perangkat lunak[1]. Selain itu, diharapkan proses melakukan 

automating testing dengan praktik tersebut berjalan dengan lancar sebelum 

melanjutkan pengujian integrasi komponen-komponen yang ada pada perangkat 

lunak[2].  

https://www.zotero.org/google-docs/?wq1rh9
https://www.zotero.org/google-docs/?sJp5qL
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Bahasa pemrograman Go atau Golang, yang dikembangkan oleh Google, 

telah menjadi salah satu bahasa pemrograman populer untuk pengembangan sistem 

backend berskala besar seperti membangun aplikasi e-commerce[3]. Tujuan dari 

proyek Golang yang dikembangkan oleh Google adalah untuk mengeliminasi dan 

rumitnya proses pengembangan perangkat lunak di Google, sehingga membuat 

proses tersebut menjadi lebih produktif dan scalable. Bahasa ini dirancang oleh dan 

untuk orang-orang yang menulis serta membaca, melakukan debug dan memelihara 

sistem perangkat lunak berskala besar. Oleh karena itu, tujuan utama Go bukanlah 

untuk melakukan penelitian dalam desain bahasa pemrograman, melainkan 

meningkatkan lingkungan kerja bagi para perancangnya dan rekan-rekan mereka.  

Go lebih berfokus pada pemrograman untuk merekayasa perangkat lunak 

daripada bahasa untuk penelitian bahasa pemrograman [4]. Golang juga memiliki 

library atau pustaka bawaan untuk pengujian (package testing), sehingga 

mendukung praktik pengujian perangkat lunak secara native. Namun, dibalik 

kemudahannya, proses penulisan unit test secara manual tetap membutuhkan 

ketelitian tinggi dan seringkali menjadi beban tersendiri, terutama bagi 

pengembang yang masih mengenal ekosistem pemrograman Go atau sedang fokus 

pada pengembangan fitur yang harus diselesaikan juga. Apalagi dengan banyaknya 

kode pemrograman yang ditulis diikuti dengan kode unit test  yang harus dibuat 

juga. Tantangan tersebut terjadi pada pendekatan Test-Driven Development yang 

mengharuskan pengujian dilakukan sebelum implementasi [5] dan semakin 

dirasakan dalam bahasa Go yang walaupun memiliki testing bawaan, namun 

menuntut eksplisitasi kode pengujian yang signifikan. 

Dengan pesatnya teknologi kecerdasan buatan , khususnya dalam bidang 

Natural Language Processing (NLP)[6], munculah pendekatan yang dikenal 

sebagai Generative Language Models dan Large Language Models , seperti 

ChatGPT dengan berbagai LLM atau GLM yang dipakai seperti o1-mini, GPT-4, 

dan model sejenis lainnya. Model-model ini mampu memahami instruksi dari 

dalam bahasa alami atau input menghasilkan teks atau kode program yang sesuai 

dengan konteks. Salah satu yang paling menonjol dengan pemanfaatan model 

bahasa ini pada proses code generation[7], yaitu kemampuan menghasilkan kode 

https://www.zotero.org/google-docs/?XIAMSf
https://www.zotero.org/google-docs/?5eU7pA
https://www.zotero.org/google-docs/?jxha69
https://www.zotero.org/google-docs/?tZ5l63
https://www.zotero.org/google-docs/?pbqjOE
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sumber dari input berbasis teks. Kemampuan ini tidak hanya pada penulisan kode 

program, tetapi juga dapat diterapkan dalam pembuatan unit test secara otomatis. 

Dengan memanfaatkan model bahasa generative, proses pembuatan unit test dapat 

diotomatisasi. Model seperti yang dimiliki oleh ChatGPT mampu membaca dan 

memahami logika fungsi dalam kode, kemudian menghasilkan kode dari skenario 

pengujian yang dibuat oleh developer. Hal ini membuka peluang besar dalam 

mempercepat siklus pengembangan perangkat lunak serta mengurangi waktu untuk 

melakukan pengujian manual.  

Penerapan model bahasa ini semakin potensial apabila diintegrasikan 

langsung dengan perangkat lunak yang membutuhkan model bahasa sebagai output 

dari permintaan input teks dari aplikasi khususnya pada lingkungan aplikasi 

peramban internet seperti Chrome. Dengan memanfaatkan Chrome untuk membuat 

aplikasi berupa Ekstensi bisa menerapkan model bahasa sebagai kekuatan utama 

untuk mengintegrasikan Generative AI atau Large Language Models yang mana 

membuat aplikasi untuk proses pembuatan unit test secara otomatis melalui 

Ekstensi Chrome. Dengan pendekatan ini, proses pembuatan unit test secara 

otomatis langsung dari browser, tanpa perlu berpindah alat atau lingkungan 

pengembangan sehingga developer tidak perlu membuka website ChatGPT dengan 

berbagai tab baru yang mana bisa berfokus pada dokumen skenario pengujian 

dengan memanfaatkan fitur-fitur dari Ekstensi Chrome seperti side panel dengan 

membagi layar menjadi dua bagian[8]. 

Pada penelitian yang membahas berbagai integrasi LLM ke perangkat lunak 

disebutkan di paper “Unifying the  Perspective of NLP and Software Engineering: 

A Survey on Language Models for Code”[6] di section 2.1.3 Testing and Analysis 

pada bagian Unit Test Generations terdapat beberapa penelitian yang menerapkan 

integrasi AI dengan metode Non-neural, Non-Transformer neural, dan 

Transformer-based. Dalam kategori pendekatan atau algoritma berbasis 

Transformer, terdapat setidaknya 13 proyek penelitian yang mengimplementasikan 

Large Language Models (LLM) untuk tugas unit test generation. Beberapa 

diantaranya adalah: AthenaTest[9][10], TestPilot[11], A3Test[12], TeCo[13], 

CodaMosa[14], ChatTester[15], ChatUniTest[16] [17], PBT-GPT[18], 

https://www.zotero.org/google-docs/?4alLDM
https://www.zotero.org/google-docs/?2VZKuk
https://www.zotero.org/google-docs/?a8Vxwp
https://www.zotero.org/google-docs/?eLeK3k
https://www.zotero.org/google-docs/?4Q1sAY
https://www.zotero.org/google-docs/?eMu1hZ
https://www.zotero.org/google-docs/?a0wwC5
https://www.zotero.org/google-docs/?pyHkxu
https://www.zotero.org/google-docs/?XheWEB
https://www.zotero.org/google-docs/?EGmvTg
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MuTAP[19], RLSQM[20], CoverUp[21], dan TELPA[22].  Proyek-proyek tersebut 

memanfaatkan model bahasa yang telah dilatih sebelumnya (pre-trained language 

models), seperti BART Transformer, untuk menghasilkan unit test secara otomatis. 

Selain itu, masing-masing proyek menggunakan dataset tertentu sebagai bagian dari 

proses pelatihan dan evaluasi model. Sebagai contoh, proyek AthenaTest 

menggunakan dataset Method2Test[23], yang dibuat dalam bahasa pemrograman 

Java, untuk melakukan  fine tuning dan evaluasi terhadap model BART dalam 

rangka meningkatkan pemahaman dan relevansi data unit test yang dihasilkan. 

 Namun, pendekatan integrasi LLM secara langsung ke dalam proyek 

perangkat lunak, khususnya pada ekstensi browser seperti Chrome, dapat 

menimbulkan tantangan signifikan terhadap kinerja sistem. Jika model LLM yang 

telah melalui proses fine tuning dioperasikan secara lokal (on-device), proses 

inferensi dari model tersebut akan mengkonsumsi sumber daya komputer pengguna 

dalam jumlah besar, seperti RAM dan CPU. Hal ini dapat berdampak pada 

performa keseluruhan perangkat, menjadikan pengalaman pengguna tidak efektif, 

terutama bagi pengguna dengan spesifikasi perangkat terbatas. 

 Sebagai solusi terhadap permasalahan ini, pendekatan yang lebih efisien dan 

ringan adalah dengan menggunakan model LLM berbasis cloud melalui API. 

Dalam pengembangan aplikasi ekstensi Chrome yang dilakukan pada penelitian ini, 

digunakan layanan API gratis dari GroqAI[24], yang memungkinkan integrasi 

LLM melalui kontrak endpoint yang telah ditentukan. Dengan pendekatan ini, 

proses pemanggilan dan generation respons dilakukan di server Groq, sehingga 

tidak membebani perangkat pengguna. Selain itu, arsitektur ini juga memudahkan 

pengelolaan sumber daya dan memungkinkan skalabilitas yang lebih baik pada 

aplikasi berbasis ekstensi browser. Pada model yang dipilih, penulis menggunakan 

varian Deepseek-r1-distill-llama-70b, Mistral-saba-24b, Gemma2-9b-it, dan 

LLaMA-3.3-70b-versatile. Model-model dengan parameter tinggi ini dipilih karena 

memiliki kemampuan penalaran (reasoning) dan pemahaman konteks kode yang 

mendalam, yang sangat krusial untuk menghasilkan unit test Golang yang valid dan 

kompleks. Dukungan infrastruktur LPU dari Groq memastikan model besar ini 

https://www.zotero.org/google-docs/?pSdnGN
https://www.zotero.org/google-docs/?BWLHuD
https://www.zotero.org/google-docs/?zXRzMm
https://www.zotero.org/google-docs/?BbAmAF
https://www.zotero.org/google-docs/?0SYSWS
https://www.zotero.org/google-docs/?9IkFeG
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tetap dapat memberikan respons cepat (real-time) tanpa membebani kinerja 

perangkat pengguna. 

 

1.2 Rumusan Masalah 

Dari permasalahan yang diuraikan dalam latar belakang, penulis 

merumuskan masalah: Bagaimana penerapan Generative AI atau Large Language 

Models dari provider GroqAI melalui ekstensi Chrome agar dapat mengotomatisasi 

pembuatan unit test Golang untuk meningkatkan efisiensi dalam Test Driven 

Development?" 

 

1.3 Tujuan 

Penelitian ini bertujuan untuk membangun sebuah unit test generator 

berbasis ekstensi Chrome yang mengintegrasikan Large Language Models (LLM). 

Sistem ini berfungsi menerima input kode program Go dan menghasilkan unit test 

secara otomatis, sehingga dapat meningkatkan efisiensi waktu, menjaga 

standarisasi kode, serta mendukung penerapan metodologi Test-Driven 

Development (TDD) tanpa perlu penulisan manual. 

 

1.4 Manfaat    

Implementasi ekstensi Chrome untuk otomatisasi pembuatan unit test 

Golang berbasis Generative AI diharapkan memberikan beberapa manfaat berikut: 

1. Meningkatkan efisiensi proses Test-Driven Development dengan mengurangi 

waktu penulisan unit test secara manual dan memudahkan pengembang pemula 

untuk mempraktikkan Test-Driven Development tanpa memahami secara 

mendalam struktur penulisan unit test di Golang. 

2. Menjamin konsistensi dan kualitas skenario pengujian karena test case 

dihasilkan dari model bahasa yang sudah  terlatih untuk code generation dengan 

milyaran parameter. 

3. Mengurangi beban kerja pengembang, sehingga mereka dapat lebih fokus pada 

desain dan implementasi fitur utama. 
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4. Menyediakan benchmark dan data empiris bagi peneliti lain untuk 

mengevaluasi kinerja model bahasa pada tugas unit test generation. 

5. Jika pengguna membuka dokumen source code atau skenario pengujian di 

browser (misalnya di GitHub, GitLab, atau platform dokumentasi internal), 

ekstensi ini dapat membuka side panel dengan mengaktifkan ekstensi chrome 

yang dibuat. 

 

1.5 Batasan Masalah 

Agar penelitian ini berjalan secara terfokus dan terarah, penulis menetapkan 

beberapa batasan sebagai ruang lingkup dalam pengembangan sistem, yaitu sebagai 

berikut: 

1. Penelitian ini hanya difokuskan pada pembuatan unit test untuk kode yang 

ditulis menggunakan bahasa pemrograman Go (Golang). Bahasa pemrograman 

lain tidak menjadi bagian dari ruang lingkup penelitian ini. 

2. Model bahasa generatif yang digunakan dalam penelitian ini terbatas pada 

model yang tersedia melalui layanan API GroqAI, dengan fokus spesifik pada 

varian: Deepseek-r1-distill-llama-70b, Mistral-saba-24b, Gemma2-9b-it, dan 

LLaMA-3.3-70b-versatile. Pengujian dan perbandingan output unit test dari 

model-model tersebut dilakukan dengan mengikuti batasan rate limit (batas laju 

permintaan) dan kuota token yang berlaku pada layanan tingkat gratis (free 

tier). Fitur tambahan seperti debugging, refactoring, atau manajemen proyek 

tidak termasuk dalam cakupan pengembangan. 

3. Unit test yang dihasilkan mungkin atau akan mengikuti standar umum 

pengujian di Golang, termasuk penggunaan pustaka bawaan (testing) dan 

pustaka pihak ketiga yang populer. Namun demikian, output dari masing-

masing model bahasa dapat bervariasi, tergantung pada arsitektur model, 

prompt, dan respons yang dihasilkan dari masing-masing API. 

4. Penelitian ini berfokus pada lingkungan browser Google Chrome, untuk 

lingkungan browser lainnya seperti Microsoft Edge, Mozilla Firefox, atau 

lainnya tidak menjadi bagian dari ruang lingkup penelitian dan tidak dievaluasi 

dalam studi ini.  
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BAB V KESIMPULAN DAN SARAN 

KESIMPULAN DAN SARAN 

 

5.1. Kesimpulan 

 Berdasarkan hasil penelitian yang telah dilakukan, disimpulkan bahwa 

proyek Rancang Bangun Ekstensi Chrome untuk Golang Unit Test Generator 

dengan Model Bahasa Generative AI berhasil dikembangkan dan 

diimplementasikan dengan baik. Sistem ekstensi ini mampu mengotomatisasi 

pembuatan kode unit test pada bahasa pemrograman Golang melalui integrasi 

dengan layanan Generative AI GroqCloud. Berdasarkan hasil pengujian black-box, 

seluruh fungsi utama seperti unggah file, pemilihan model, penyimpanan riwayat, 

dan antarmuka pengguna berjalan sesuai dengan kebutuhan yang telah dirancang. 

 Dari hasil evaluasi model bahasa terhadap dataset golang-test-from-the-

stack , diperoleh bahwa model Deepseek-R1-distill-LLaMA menunjukan performa 

yang stabil dan akurat dalam menghasilkan unit test yang sesuai dengan referensi, 

dengan tingkat keberhasilan kompilasi mencapai lebih dari 90 persen serta line 

coverage dan branch coverage diatas 95 persen. Selain itu, hasil System Usability 

Scale (SUS) dari 45 responden memperoleh nilai rata-rata 65,12 yang termasuk 

diterima namun terdapat perbaikan, yang mana menunjukan ekstensi ini cukup 

digunakan dan memiliki tingkat kegunaan yang sedang. 

 

5.2. Saran 

Penelitian ini masih memiliki ruang untuk pengembangan lebih lanjut. 

Berdasarkan evaluasi dan tingkat kegunaan sistem yang berada pada kategori 

Marginally, disarankan agar penelitian berikutnya dilakukan pada peningkatan 

pada aspek kemudahan penggunaan. Pengembangan dapat difokuskan pada 

penyederhanaan alur interaksi pengguna, seperti navigasi yang lebih intuitif, 

pengaturan otomatis untuk pemilihan model dari kesukaan pengguna, serta 

penambahan panduan interaktif (tutorial on-screen ) agar pengguna baru lebih 

mudah memahami fungsi setiap fitur tanpa harus membaca dokumentasi secara 
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terpisah. Selanjutnya mengonsumsi respons dari model bahasa dengan UI yang 

lebih intuitif. 

Selain fokus pada peningkatan usability, sistem mungkin dapat 

dikembangkan dengan fitur integrasi eksternal, misalnya koneksi langsung ke 

github atau VS Code, dimana pengguna tidak perlu mengimpor kode program 

hanya menjalankan ekstensi saja sudah mengenerate file kode unit test. 
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LAMPIRAN 

 

 

Repository Golang Unit Test Generator: https://github.com/Rizald95/golang0-unit-

test  

 

Repository Evaluasi: https://github.com/Rizald95/Golang0-unit-test-evaluation 

 

Link Google Colab Evaluasi Bleu, Rouge, dan Exatch Match Part 1: 

https://colab.research.google.com/drive/17nCGwniqyMNTacrZCQ0MoLqUPUse

_U7e?usp=sharing 

 

Link Evaluasi BLEU, ROUGE, dan Exatch Match Part 2 :  

https://colab.research.google.com/drive/1laj9Hl9_TedojkA5DsZ0o0fQDmLDyzG

C?usp=sharing 

  

https://github.com/Rizald95/golang0-unit-test
https://github.com/Rizald95/golang0-unit-test
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