
AN ANALYSIS ON COMPLEXITY
MEASUREMENTS

Agung Fatwanto1

Abstrak

Upaya untuk memmukan dan mengeliminasi kesalahan
akan sangat berguna bagi proses pengembangan software. Langkah
preventij ini diharapkan dapat menurunkan kerusakan potential
pada sistem software yang dikembangkan. Tingkat kompleksitas
dipercaya memiliki kaitan dengan kesalahan dalam pengembangan
software. Beberapa studi telah dilakukan untuk mengetahui
korelasi antara tingkat kesalahan dengan kerusakan software.
Tulisan ini berusaha menganalisis beberapa metrik kompleksitas
untuk mengetahui nilai guna metrik. Sebuah klasifikasi untuk
metrik kompleksitas dan kriteriayang dapat dipakai sebagai meta-
metrik didefinisikan dan diterapkan sebagai alat analisis. ]uga
telah dilakukan evaluasi pada salab satu metrik kompleksitas

yang paling memenuhi kualifikasi.

Keywords: complexity, metrics, measurements, software, defects.

A Introduction

Minimizing defects rate is one of the main goal on managing
software system development. As size of the project increase, it is
believed that the software being build become more complex. Some
preliminary studies noted that software complexity have significant
correlation with errors and defects rate.

1 Dosen Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta



Research on complexity has been done for several years. The
main point of those studies were tried to find any correlation between
some complexity attribute and the resulting defects rate. There are
three types of works on the measurements of complexity: (i) Finding
the relation between size and complexity. Generally, these types of
works try to utilize size of program, such as Line of Code (LOG) and
Function Point (FP) as a predictor of defects. Some research were
aiming to proof the conventional thinking that larger program size
would impact to the higher complexity, and finally result on the greater
of defects rate. Surprisingly the result is not as what have been
commonly thinking. On some works which have been done in
FORTRAN,2 Pascal, PL/S, and Assembly language3, found that size
of program modules have negative relationship with complexity.
Another study on Ada4 and data collected from the development of
AS/4005, shown that LOG has a curvilinear relation with defects rate.
The explanation of these phenomena could be described in this manner:
as the size of program modules become lower, it could be more modules
need to build the system. Therefore, more interface need to be
acknowledged. Since the interface complexity levels are independent
over the module size, small module would have to deal with same
level of interface complexity as larger module. And since smaller
modules have to face with more interface, so smaller modules mean
higher interface complexity. On the other way, if the size of module
becomes larger, it will be more parts of the internal module need to be
handled, therefore the complexity is rise. It is explain the curvilinear
relationship between LOG and defects. The previous study by Withrow
found that modules with around 250 LOG have the lowest defects
rate.6 (ii) Analyzing the mechanism of program. This type of study
analyzes the internal mechanism of a program within module. There
are two well known works of this type. The first work was study of

2 V R. Basili and B. T. Perriconef "Software Errors and Complexity: An Empirical
Investigation", in Communication of the ACM, 1984, p.42-52.

5 V. Shen, T. Yu, and L. Paulsen, "Identifying Error-prone Software — An
Empirical Study", in IEEE Transaction on Software Engineering, 1985, p. 317-324.

4 C. Withrow, "Error Density and Size in Ada Software", in Software Engineering
Process Group, 1990, p.26-30.

3S. H. Kan, Metrics and Models in Sof£u>aj-eQuality Engineering?"1 Edition., (Boston,
MA: Addison-Wesley, 2003).

6 Ibid p.26-30.

An Analysis on Complexity Measurements (Agung Faiivanto)



cyclomatic complexity, which later known as McCabe cyclomatic
complexity.7 This study was trying to relate the decision structure of a
program and complexity. On research conducted by Craddock, it is
known that cyclomatic complexity is a better predictor of defects than
LOG at the low-level design and code inspections8. The second work
was study on the vocabulary of a program, which named Halstead's
software science.9 Computation of complexity on this study relies on
counting the number of operator and operand which build the program.
Another study of this type was knot count.10 Knot count measures the
number of crossing edge from the control flow operator to its destination
which can not be avoided. There also a study on entropy-based software
complexity.11 This research shows that complexity of a program is
inversely proportional with its operator's information content, (iii)
Viewing the structure of a software system to find out the whole system
complexity. According to this, software system complexity depends
on the structure of modules which build up the system and the
interaction between them. A software system could always be seen as
a building block which made up from a lot of materials and constructed
in a somewhat architectural scheme. Analysis of the raw materials and
the architectural design may give a good view on the complicatedness
of that building. Analogically, this complexity analyzes the architectural

complexity of a building. To mention some studies on this type of
works are: invocation complexity,12 stability measurements,13 data flow
complexity,14 information flow metrics,15 system partitioning measure,16

7 T. J. McCabe, "A Complexity Measure", in IEEE Transaction on Software
Engineering, 1976, p. 308-320.

8 L. L. Craddock, "Analyzing Cost-of-Quality, Complexity, and Defect Metrics
for Software Inspections", in Technical Report TRQ7.844 IBM Rochester, 1987.

g M. H. Halstead, Elements of Software Science, (New York: Elsevier North
Holland, 1977).

10 M. R. Woodward, M. A. Hennel, and D. Hedley, "A Measure of Control Flow
Complexity in Program Text", in IEEE Transaction on Software Engineering, 1979.

1' W Harrison, "An Entropy-Based Measure of Software Complexity", in IEEE
Transaction on Software Engineering, \ 992.

12 C. L. McClure, "A Model for Program Complexity Analysis", in Proceeding
IEEE Third International Conference on Software Engineering, 1978, p.149-157.

15 S. S. Yau, and J. S. Collofello, "Some Stability Measures for Software
Maintenance", in IEEE Transaction on Software Engineering 1979, p.545-552.

14 E. I. Oviedo, "Control Flow, Data Flow and Program Complexity", in
Proceeding IEEE COMPSAC, 1980, p.146-152.

15 S. M. Henry, and D. Kafura, "Software Structure Metrics Based on Information
Flow", in IEEE Transaction on Software Engineering, 1981, p.510-518.

Kaunia, Vol. II, No. 1, April 2006 69



structured designs quality,17 hybrid information flow metrics,18 system
complexity model,19 object-oriented metrics,20 object-oriented metrics
suite,21 metric for object-oriented design,22 and functional complexity.23

This type of complexity measurements are categorized as structured
design complexity, and become the scope of this paper. As a constraint,
this paper will give a focus in analyzing structured design complexity
on metric which most aligned with some criteria describe in section C.

B. A Brief Description of Structured Design Complexity
According to Oxford Advance Learner's Dictionary, complexity

means "state of being complex", and complex means "difficult to
understand or explain because there are many different parts".24

Meanwhile, IEEE defines software complexity as "the degree to which
a system or component has a design or implementation that is difficult
to understand and verify"25. Measurements on structured design
complexity realize that each module on a software system has to be
treated as a constructor of a system, so the complexity of a whole
system will depend on the complexity of each module and the
interaction between them.

16 L. A. Belady, and C. J. Evangelisti, "System Partitioning and It's Measure", in
Journal of System and Software, 1981, p.23-39.

17 D. A. Troy, and S. H. Zweben, "Measuring the Quality of Structured Design",
ta Journal of System and Software, 1981, p.l 13-120.

18 S. M. Henry, and C. Selig, "Predicting Source-Code Complexity at the Design
State", in IEEE Software, 1990, p.36-44.

" D. N. Card, and W W Agresti, "Measuring Software Design Complexity", in
Journal of System and Software, 1988, p.185-197.

2U M. Lorenz, and J. Kidd, Object-Oriented Software Metrics, (USA: Prentice-Hall,
1994).

21 S. R. Chidamber, S. R., and C. F. Kemerer, "A Metrics Suite for Object Oriented
Design", in IEEE Transaction on Software Engineering, 1994, p.476-493.

22 F. Abreu, "MOOD - Metrics for Object Oriented Design", in OOPSLA'94
Workshop, 1994.

23 D. A. Tran-Cao, A. Abran, and G. Levesque, "Functional Complexity
Measurement'', in Proceedinglnternational Workshop on Software Measurement, 2001, p.173-
181.

21 Oxford Advance Learner's Dictionary, 1991.
23 IEEE Computer Society: IEEE Standard Glossary of Software Engineering

Terminology, IEEE Std. 610.12-1990.

7Q An Analysis on Complexity Measurements (Agung^atwanto)



C. Some Criteria on Software Metrics
Kafura and Henry recommend four criteria for a practical and

powerful software metrics system:26 (i) metrics have to be applicable
for a large-scale system. On handling such kind of system, metrics
should be automatic for speed and accuracy. The metrics also have to
be applicable at the design phase in order to minimize the evaluation
cost, (ii) metrics must considering change in the structure of the system,
so it should be complete and sensitive for that change. Any alteration
and their magnitude which important for the system should be reflected.
It also should sensitive to the implicit of data connection on the system,
(iii) metrics have to be validated on real large-scale system. Metrics
which only verified on small-scale projects would be unreliable in
dynamic nature, (iv) metrics must be robust. Metrics measurement
should applicable to all class of system structures, such as single
module complexity, interface properties, and should be able to signaling
where part of the system which need to be modify. It should also be
interpretable, so it can shows causes and solution for structural
complexity problems.

Xenos and his colleagues offer seven meta-metrics for the
software metrics evaluation.27 (i) Measurement Scale. It classify metrics
in term of different values on various measurements scale which
defined by Steven.28 It is nominal, ordinal, interval, ratio, and absolute.
(ii) Measurements Independence. This criteria categorize metrics based
on its outcome when applied at the equal measurement unit. The
measurements result could be similar or different. It also examined the
level of interpretation ambiguity of such metrics, (iii) Automation.
This meta-metric measuring the degree of effort to make a metric
become automatic, (iv) Value of Implementation. It observed the
independency of a metric over implementation. An independent metric
could be use at early stage of development. On the other hand, a
dependent metrics is able to assess the result of the implementation,
so it can explain the success and unsuccessful factors and how to

26 D. Kafura, and S. M. Henry, "Software Quality Metrics Based on
Interconnectivity", in Journalof System and Software, 1981,p.l21-131.

21 M. Xenos, D. Stavrinoudis, K. Zikouli, and D. Christodoulakis, "Object-
Oriented Metrics - A Survey", in Proceeding of the FESAL4 2000,2000.

28 S. S. Stevens, "On the Theory of Scales of Measurement", in Science, 1947,
p.677-709.

Kaunia, Vol. II, No. 1, April 2006 71



address it. (v) Monotonicity. A metric will have good level of
monotonicity if its value is always equal or greater than the total value
of its constituent metrics which assembling it. (vi) Simplicity. It look
at the level of simplicity of a metric regard to their definition,
understandable, and its supporting for future plan, (vii) Accuracy. These
criteria observe the relation of a metric to its characteristics or factors
being measured.

Getting idea from those two metrics criteria and considering the
current technology and practice in software development, it would be
important to propose a new criterion for software metrics: (i) Predictive.
It could be implemented at the early stage of development time. One
intention of using complexity metrics is to estimate the complexity of
a software design. Minimizing errors as early as possible is less expensive
rather than fixing the defects in later stage. A good prediction of
complexity at design phase would help software engineer to reduce
the potential defects rate of the system being developed, (ii) Guidance.
Ability in guiding the software designer to simplify the complexity of
software system. A system will absolutely have inherent complexity
which embedded on them. But a poor design would increase the level
of complexity. Good complexity metrics will be able to show which
part of module need to be re-engineered in order to gain simplest
complexity, (iii) Comprehensive. Computing complexity considering
to the whole system. An effort to simplify complexity on module basis,
can be justifiable by metrics which just considering the modular
complexity. Unfortunately, simplifying modular complexity will be
meaningless in regard to the complexity of the whole system. This
could be happen because a simplifying effort to a single module would
lead to the rising of complexity level of other parts of the system.
Additionally, complexity of whole system depends on the interaction
between their parts, (iv) Computable. Could be implemented easily,
accurately, fast, and engaging little effort. All of those criteria will be
achieved easily by any metrics for small-scale software project. For a
large-scale project, it absolutely need automation process in order to
align with the above criteria. It have to be mathematically proofed
that such kind of metrics will be computable.

72 An Analysis on Complexity Measurements (Agung Fat&antd)



D, Assessing Complexity Metrics
Using the last propose criteria, it would be able to evaluate the

above complexity metrics in regard to their usefulness in the current
practices. Apply with the first criteria, which is predictive, it is clearly
seen that the first two type of complexity metrics are not fulfilling.
Both size and internal mechanism metrics have could only be assessed
after the coding phase. Different with the previous metric, the third
type of metrics is used at design phase. These metrics calculate the
complexity of software system at higher level than the first two ones.
It could be used as predictors of complexity and later errors and defects
rate for the next development phase. From this point, it just structured
design complexity that satisfying the predictive criteria. Employing
the second criteria, it is known that size metrics does not meet with it.
According to some studies, size metrics just giving signal about how
large of a module should be in order to get low complexity.
Unfortunately, most of those studies only work on data gathered from
the project with single language and similar environment. It would be
different if it have to apply at diverse software background. Meanwhile,
the last two type of complexity metrics fulfill this criteria. Internal
mechanism complexity metrics can give explicit guidance how to
minimize complexity on a code level. On the similar way, structured
design complexity could guiding software designer to avoid unnecessary
complexity that would happen during design phase. That is why, internal
mechanism and structured design metrics comply with guidance criteria.
Utilized the third criteria, comprehensive, again the first two type of
complexity metrics would not fulfilling it. Both the two metrics only
observe software at the code level. It can not employed on the design
level when software is seen as a system consist of several component.
In the meantime, structured design complexity was developed
concerning software design. It really built based upon platform for
design measurement. Hence, it used for evaluating design of software
system, and therefore comply with the third criteria. Almost all of
complexity metrics mentioned here, satisfying the fourth criteria. Except
for some structured complexity metrics, all other metrics are computable
and would be able to make automation on it. Table 1 summarize this
evaluation of the three type of metrics.

In recent practices, Object-Oriented Design (OOD) has been
widely used for developing software system in academics, industries

Kaunia, Vol. II, No. 1, April 2006 73



and even governmental area. The newly emerging methodology, Model
Driven Architecture (MDA) from the Object management Group
(OMG), have also began been using worldwide in many different
application and environment Two of those things have a common
platform on the way of developing software system. Building software
system using both OOD and MDA, will always based on the structured
design methodology. Therefore, structured design complexity would
be helpful to give guidance in today development process.

Table 1.
Characteristics of the Three Type of Complexity Metrics

Size Metrics
Procedural Complexity
Metrics

Structured Complexity Metrics

not

not

yes

not

yes
yes

Not

Not
Yes

yes

yes
yes*

* not for all metrics

This paper will only analyze on information flow metrics, hybrid
information flow metrics, and especially focusing on system complexity
metrics. Those three metrics were chosen simply because beside their
use are widely spreading in software engineering practice, they are easily
computable and automable, and also they have relations to some extent.
Moreover, some other metrics were not adequately validated yet (such
as data invocation complexity, stability measurements, data flow
complexity, and functional complexity) which are not satisfy the Kafura
and Henry's third criteria. While the others are not simple and easily
computable (such as system partitioning measurements, structured
design quality, and object oriented metrics) which are not comply with
the third and sixth criteria from Xenos and his colleagues'.

E. Review on System-level Complexity Metrics

Viewing software system as a building, it wul possible to analyze
the architectural complexity of the building. A system always consist
from components and there exist interaction between those
components. Complicatedness of a system would depend upon three
factors:

1. internal complexity of the constructing components,
2. interaction complexity between components within a system, and

74 An Analysis on Complexity Measurements (Agung Fahvanto)



3. the message contents which pass from one component to another.

On a software system, those three matters become internal
module (procedural) complexity, structural complexity, and data
(parameter) complexity. Figure 1 describes the graphical view of a
software system.

fan-<

fan-in

data

Figure 1. Graphical View of Software System

From this abstract description, it already been defined some
parameter on structural complexity. Number of request to a given
module is fan-in for that module, while the number of call to another
module its fan-out. Based on these parameters, this paper will analyze
system complexity metrics which had examined as the most aligned
metrics based on software metrics criteria. Although this metrics was
assembled for procedural purpose in nature, it still meaningful if its
use on systematical framework. That could be happened since this
metric was constructed based on the platform of coupling proposed
by Myers, Yourdon, and Constantine.29

Before analyze system complexity metrics, it is important to
describe two preliminary studies on complexity which becomes the
basis for constructing that metrics. Those studies were done by Henry,

G. J. Myers, Composite Structured Design, (U.K.: Van Nostrand Reinhold, 1978).

Kaunia, Vol. II, No. 1, April 2006 75



Kafura, and Selig. The first study done by Henry and Kafura formulate
information-flow complexity as:30

C = (fan _inx fan _ourf (1)

where Cp is the complexity of module p. This complexity have a

significant correlation with defects (r2 - 0.95) when they validate it on
their subsequent study with UNIX operating system project That
correlation is higher compare with McCabe complexity (r2 = 0.89) and
only slightly less than Halstead's software science (r2 = 0.96) when
validated using same data. That study also shown that there is high
correlation between McCabe and Halstead's (r2 = 0.84), but there are
less correlation between information flow and the other two metrics
with r2 = 0.38 for McCabe and r2 = 0.35 for Halstead's31. However, in
some later study, it is known that it only fan-out who has a significant
relation with defects rate. One example which shows that there is no
relation between fan-in and defects rate was study on AS/400 system
where the system was written in PL/MI with around 70 KLOC32. A
main drawback from this complexity formulation in the context of
systematic view is this formulation only takes the inter-module
relationship into its account. The abandoning data complexity on the
computation of system complexity will give misleading prediction if
its implemented at the data-intensive system. Meanwhile, a
simplification effort guided by this formulation would only be
minimizing the number of fan-in and fan-out. Suppose there is a module
with 1 fan-in and n fan-out. According to the formulation, the
complexity of that module is simply n2. If a reconstruction done to
that module, and all the procedural routine on another module are
collected to one module, so the fan-out for this module become zero.
Applying the above formula, the complexity of the module become
zero. That absolutely does not make any sense, since the internal
module complexity become higher.

M S. M. Henry, and D. Kafura, "Software Structure Metrics Based on Information
Flow", in IEEE Transaction on Software Engineering, 1981, p.510-518.

11 D. Kafura, and S. M. Henry, "Software Quality Metrics Based on
Interconnectivity", in/otf/-«a/0f System and S oftware, 1981, p.121-131.

32 S. H. Kan, Metrics and Models in Software Quality Engineering 2nd Edition, (Boston,
MA: Addison-Wesley, 2003).

An Analysis on Complexity Measurements (Agung Fattvanto)



To overcome the inclusiveness problem of internal module
complexity on the complexity formula, Henry and Selig conducted
another study. This new formula composes both internal mechanism
and structural complexity into account to formulate the system
complexity. They proposed a new complexity formulation which they
called Hybrid Information-Flow Metric33:

HCp = Cip x (fan _ in x fan _ out f (2)

where HCp is hybrid-complexity of module p and Cjp is the internal

complexity of module p. In this study, Henry and Selig validate their
proposed metrics using data from 27 projects which consist of 981
modules. That data had excluding around 10 percents of outliers.
Unfortunately, Henry and Selig did not validate correlation between
this complexity and defects rate. Since their work was not intended to
find out the relation between complexity and defects, simply they just
observed the relation between this hybrid complexity with the
refinement level of program for specification purposes. Hence, even
this formulation has include the procedural complexity of module,
this formulation still in complete since its not employing data complexity
to count the overall system complexity. Therefore, this formula would
not suitable if it is applied on data-intensive software system.

Another study on complexity at systematic level was conduct by
Card and Agresti. In that study, they propose system complexity metrics.
According to them, complexity of a module rely on the interaction of
that module with another modules in the system and the complexity
of input-output (data) which pass to and from that given module. They
construct a formula for this complexity as34:

(3)

53 S. M. Henry, and C Selig, "Piedicting Source-Code Complexity at the Design
State", in E Software, 1990, p.36-44.

M D. N. Card, and W W Agresti, "Measuring Software Design Complexity", in
journal of System and Software, 1988, p.185-197.

Kaunia, Vol. ll,^o. 1, April2006 77



where:
C = software system design complexity,
f — number of fan-out,
v = number of I/O unit, and
n = number of module in the system

On this study, they found that design complexity had a significant
correlation with defects rate (r2 = 0.83). Followed with subsequent
study conducted by Card and Glass, they derived a regression formula
for error rate based on system complexity with35:

Error rate = -5.2 + 0.4 x complexity (4)

Since the above formulation was derived from regression analysis, its
always open to debate. The result of formulation which derived from
a regression analysis will always depend on the data that had been
used, and its just observed a particular substance. That formulation
would probably not fit if its implemented to another environment,
using different language, and at different application purposes. To make
it robust, a proposed formulation should validated on various
environment employing large-scale data.

In summary, this complexity metrics looks quite good and
applicable for computing complexity at system design level. It satisfies
almost all of the meta-metric criteria mentioned in section 3. According
to this formula, complexity of a module is depended on the number of
interaction of this module with another module within system and
number of data which come into that module. Additionally, a whole
system complexity is depended on the total relative complexity of its
constructing module. The main obstacle of this formulation is quite
similar with the two previous metrics. According to this formula, since
the complexity of a module is related straightly to its fan-out and I/O
unit, therefore minimizing module complexity could be done by
gathering as much process as possible into one module, so it will reduce
the number of fan-out and I/O unit. It is obviously very illogical because
a central module where all the process gathered would be very complex.
Another scenario can also be used to describe the weakness of this
metrics. Suppose there is a module which have no fan-out and just

35 D. N. Card, and Robert L. Glass, Measuring Software Design Quality (Englewood
Cliffs, N.J.: Prentice-Hall, 1990).

An Analysis on Complexity Measurements (Agitng Fatwanto)



have one I/O unit that passes to that module. The absolute complexity
value of this module will be only one. When this value divided by
number of modules of the whole system, it will become very small.
Even if this module has very complex procedure within it, this
complexity formulation did not take this into account.

Look at to those three metrics, it is clearly seen that they have
common weaknesses. First, they didn't considering all of the three
factors on system-level complexity. One explanation why it could
happen because one method used to derive the formulation is regression
analysis. Using that tool, if there are two variables which have high
correlation between each other, it can just use one variable as a
predictor, since the other factor is already represented. From the study
by Card and Glass, it found that procedural complexity had a significant
correlation with I/O unit. Therefore, they just use I/O unit for
computing formulation, since the internal procedure complexity has
represented by the I/O unit. This first weakness leads to the second
weakness. The developing of all the three metrics above is lack of
theoretical basis. They looks like did not build with strong mathematical
platform, and conventional thinking on system complexity, for instance,
the formula on system complexity metrics. On the computation on
data complexity, the number of I/O unit is divided by f+1. The addition
of fan-out with one just to anticipate if there is a module with zero
fan-out, so it would lead to infinity on data complexity. So, that formula
did not have a rational judgment on the relationship with data
complexity. A formulation should be based on the rational thinking
about a matter being formulate. The third weakness is all of those
metrics did not carry out complexity in comprehensive and integrative
way. Reducing complexity should be seen as the whole system interest.
There are two essential aspects on system-level complexity, (i) Given
that system-level complexity rely on three factors mentioned above,
an effort in reducing complexity in one part of system, would lead to
increasing complexity at another part within this system. That is one
of main logical basis on system complexity, (ii) Another rational basis
which should also be considered is there always remains inherent
complexity on any kind of system. Consequently, any formulation on
complexity should not result null or zero value,

Kaunia, Vol. II, No.1, April 2006 79



E Summary and Future Work
Metrics on complexity measurement can be classified as: size

related metrics, procedural complexity, and structured design
complexity. In order to be useful for recent practice in software
development project, a complexity metrics should satisfy these
following criteria: predictive, giving guidance, comprehensive, and
computable. Using the above criterion and another meta-metrics
mentioned in section C36 it clearly seen that system complexity metric
is the one who most aligned with those criteria, hence it is worth to
analyze. However, it still needs to be explored another form of
complexity measurements, especially on system-level complexity
metrics which satisfy the two aspect of rational basis. This work could
be done using graph theory as a foundation for developing the
formulation concept.

ifi D. Kafura, and S. M. Henry, "Software Quality Metrics Based on
Interconnectivity", in Journal of System and Software, 1981,p.l21-131.

JJQ An Analysis on Complexity Measurements (-4jj«#g Fataranto)



REFERENCES

Abreu, F., "MOOD - Metrics for Object Oriented Design", in
OOPSLA'94 Workshop, 1994.

Basili, V. R., and B. T. Perticone, "Software Errors and Complexity:
An Empirical Investigation", in Communication of the ACM,
January 1984, p. 42-52.

Belady, L. A., and C. J. Evangelisti, "System Partitioning and It's
Measure", in Journal of System and Software, 2, 1981, p. 23-39.

Card, D. N., and W W Agresti, "Measuring Software Design Complexity",
m Journal of System and Software, 8, 1988, p.185-197.

Card, D. N., and Robert L. Glass, Measuring Software Design Quality,
Englewood Cliffs, N.J.: Prentice-Hall, 1990.

Chidamber, S. R., and C. F. Kemerer, "A Metrics Suite for Object
Oriented Design", in IEEE Transaction on Software Engineering,
Vol. 20, No. 6, June 1994, p. 476-493.

Craddock, L. L., "Analyzing Cost-of-Quality, Complexity, and Defect
Metrics for Software Inspections", in Technical Report TR07.844,
IBM Rochester, Minn., April 1987.

Halstead, M. H., Elements of Software Science, New York: Elsevier North
Holland, 1977.

Harrison, W, "An Entropy-Based Measure of Software Complexity",
in IEEE Transaction on Software Engineering, Vol. 18, No. 11,
November 1992.

Henry, S. M., and C. Selig, "Predicting Source-Code Complexity at the
Design State", in IEEE Software, March 1990, p.36-44.

Henry, S. M., and D. Kafura, "Software Structure Metrics Based on
Information Flow", in IEEE Transaction on Software Engineering,
Vol. SE-7, 1981, p.510-518.

IEEE Computer Society, IEEE Standard Glossary of Software Engineering
Terminology, IEEE Std. 610.12-1990.

Kafura, D. and S. M. Henry, "Software Quality Metrics Based on
Interconnectivity", in Journal of System and Software, Vol. 2, 1981,
p.121-131.

Kan, S. H., Metrics and Models in Software Quality Engineering 21"' Edition,
Boston, MA: Addis on-Wesley, 2003.

Kaunia, Vol. II, No. 1, April 2006 81



Lo, B., "Syntactical Construct Based APAR Projection", in IBM Santa
Teresa laboratory Technical Report, California, 1992.

Lorenz, M. and J. Kidd, Object-Oriented Software Metrics, USA: Prentice-
Hall, 1994.

McCabe, T. J., "A Complexity Measure", in IEEE Transaction on Software

Engineering, Vol. 2, No. 4, December 1976, p. 308-320.

McClure, C. L., "A Model for Program Complexity Analysis", in Proceeding
IEEE Third International Conference on Software Engineering, May
1978, p.149-157.

Myers, G. J. Composite Structured Design, Wokinghatn, U.K.: Van Nostrand
reinhold, 1978.

Oviedo, E. L, "Control Flow, Data Flow and Program Complexity", in
Proceeding IEEE COMPSAC, Chicago, IL, November 1980, p.
146-152.

, Oxford Advance Learner's Dictionary, U.K.: Oxford
University,! 991.

Shen, V, T. Yu, S. Thebaut, and L. Paulsen, "Identifying Error-prone
Software - An Empirical Study", in IEEE Transaction on Software
Engineering, Vol. SE-11, No. 4, April 1985, p. 317-324.

Stevens, S. S., "On the Theory of Scales of Measurement", in Science,
Vol. 103, 1947, p. 677-709.

Tran-Cao, D., A. Abran, and G. Levesque, "Functional Complexity
Measurement", in Proceeding International Workshop on Software
Measurement, Montreal, Quebec, August 2001, p.173-181.

Troster, J., "Assessing Design-Quality Metrics on Legacy Software", in
Software Engineering Process Group, IBM Canada Ltd. Laboratory,
North York, Ontario, September, 1992.

Troy, D. A., and S. H. Zweben, "Measuring the Quality of Structured
Design", in Journal of System and Software, 2, 1981, p.l 13-120.

Withrow, C., "Error Density and Size in Ada Software", in Software
Engineering Process Group, IBM Canada Ltd. Laboratory, North York,
Ontario, January 1990, p. 26-30.

Woodward, M. R., M. A. Hennel, and D. Medley, "A Measure of Control
Flow Complexity in Program Text", in IEEE Transaction on Software
Engineering, SE-5, Issue 1, January 1979.

An Analysis on Complexity Measurements (Agung Fatwanto)



Xenos, M., D. Stavrinoudis, K. Zikouli, and D. Chris to doulakis,
"Object-Oriented Metrics - A Survey", in Proceeding of the
FESMA 2000, Madrid: Federation of European Software
Measurement Association, 2000.

Yau, S. S., and J. S. Collofello, "Some Stability Measures for Software
Maintenance", in IEEE Transaction on Software Engineering Vol.
SE-5, 1979, p. 545-552.

Yourdon, E. and L. L. Constantine, Structured Design, Englewood Cliff,
N.J.: Prentice-Hall, 1979.

Kaunia, Vol. II, No. 1, April 2006


