ANALISIS KETERBATASAN OPERATOR BESSEL-RIESZ DI RUANG LEBESGUE YANG TERDEFINISI PADA RUANG METRIK UKURAN

Awal Febriantono, NIM.: 20106010050 (2025) ANALISIS KETERBATASAN OPERATOR BESSEL-RIESZ DI RUANG LEBESGUE YANG TERDEFINISI PADA RUANG METRIK UKURAN. Skripsi thesis, UIN SUNAN KALIJAGA YOGYAKARTA.

[img]
Preview
Text (ANALISIS KETERBATASAN OPERATOR BESSEL-RIESZ DI RUANG LEBESGUE YANG TERDEFINISI PADA RUANG METRIK UKURAN)
20106010050_BAB-I_IV-atau-V_DAFTAR-PUSTAKA.pdf - Published Version

Download (3MB) | Preview
[img] Text (ANALISIS KETERBATASAN OPERATOR BESSEL-RIESZ DI RUANG LEBESGUE YANG TERDEFINISI PADA RUANG METRIK UKURAN)
20106010050_BAB-II_sampai_SEBELUM-BAB-TERAKHIR.pdf - Published Version
Restricted to Registered users only

Download (2MB) | Request a copy

Abstract

The limitations of the Bessel-Riesz operator have been extensively studied and developed by researchers, particularly in the field of mathematical analysis. This research examines the boundedness of the Bessel-Riesz operator in Lebesgue spaces defined on metric measure spaces. The Bessel-Riesz operator is a convolution of the Bessel-Riesz kernel and functions in Lebesgue spaces. Before proving the boundedness of the Bessel-Riesz operator, it is first shown that the Bessel-Riesz kernel satisfies the membership condition in the L1 space. Furthermore, the proof also utilizes the boundedness of the Hardy-Littlewood maximal operator in Lebesgue spaces. By leveraging the membership property of the Bessel-Riesz kernel in the L1 space and the boundedness of the Hardy-Littlewood maximal operator, the Bessel- Riesz operator is shown to be bounded from Lp to Lp.

Item Type: Thesis (Skripsi)
Additional Information / Supervisor: Malahayati, S.Si., M.Sc. dan Aulia Khifah Futhona, S.Si., M.Sc
Uncontrolled Keywords: Kernel Bessel-Riesz, Operator Bessel-Riesz, Ruang Lebesgue, Ruang Metrik Ukuran
Subjects: 500 Sains Murni > 510 Mathematics (Matematika)
Divisions: Fakultas Sains dan Teknologi > Matematika (S1)
Depositing User: Muh Khabib, SIP.
Date Deposited: 10 Feb 2025 09:26
Last Modified: 10 Feb 2025 09:26
URI: http://digilib.uin-suka.ac.id/id/eprint/69945

Share this knowledge with your friends :

Actions (login required)

View Item View Item
Chat Kak Imum